File size: 3,643 Bytes
1cc659a
103e460
bec953a
 
 
7da8eca
bec953a
a9e4586
1d22228
8c080f9
41e0ed9
1d22228
7da8eca
 
 
 
 
57f90b6
7da8eca
 
 
 
 
 
 
 
 
 
1d22228
7da8eca
 
 
 
 
 
1d22228
7da8eca
 
 
 
 
 
 
 
1d22228
bec953a
 
7da8eca
 
1d22228
af846b8
 
1d22228
b531ddf
b895ef0
bec953a
7da8eca
bec953a
b895ef0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, QwenImagePipeline #StableDiffusion3Pipeline
from huggingface_hub import hf_hub_download

device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()

def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
    if Model == "SD3":
        #torch.cuda.max_memory_allocated(device=device)
        torch.cuda.empty_cache()
        SD3 = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.float16).to(device)
        torch.cuda.empty_cache()
        image=SD3(
        prompt=Prompt,
        height=height,
        width=width,
        negative_prompt=negative_prompt,
        guidance_scale=scale,
        num_images_per_prompt=1,
        num_inference_steps=steps).images[0]
    if Model == "FXL":

        torch.cuda.empty_cache()
        #torch.cuda.max_memory_allocated(device=device)
        pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16)
        pipe.enable_xformers_memory_efficient_attention()
        pipe = pipe.to(device)
        torch.cuda.empty_cache()

        #torch.cuda.max_memory_allocated(device=device)
        int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
        pipe.enable_xformers_memory_efficient_attention()
        pipe = pipe.to(device)
        torch.cuda.empty_cache()
        image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
        torch.cuda.empty_cache()
        
    return image
    
gr.Interface(fn=genie, inputs=[gr.Radio(["SD3", "FXL"], value='SD3', label='Choose Model'),
                               gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1536, 1024, step=128, label='Height'),
                               gr.Slider(512, 1536, 1024, step=128, label='Width'),
                               gr.Slider(.5, maximum=15, value=7, step=.25, label='Guidance Scale'), 
                               gr.Slider(10, maximum=50, value=25, step=5, label='Number of Prior Iterations'),
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
             outputs=gr.Image(label='Generated Image'), 
             title="Manju Dream Booth V2.4 with Stable Diffusion 3 & Fusion XL - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True)