Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,69 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pdfplumber
|
3 |
-
import faiss
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
from transformers import pipeline
|
8 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
|
10 |
-
# Load embedding model
|
11 |
-
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
12 |
-
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
13 |
-
|
14 |
-
# Function to extract text from PDF
|
15 |
-
def extract_text_from_pdf(pdf_file):
|
16 |
-
text = ""
|
17 |
-
with pdfplumber.open(pdf_file) as pdf:
|
18 |
-
for page in pdf.pages:
|
19 |
-
text += page.extract_text() + "\n"
|
20 |
-
return text.strip()
|
21 |
-
|
22 |
-
# Chunking text
|
23 |
-
def chunk_text(text, chunk_size=500, overlap=100):
|
24 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
25 |
-
return splitter.split_text(text)
|
26 |
-
|
27 |
-
# Generate embeddings
|
28 |
-
def generate_embeddings(text_chunks):
|
29 |
-
return embedding_model.encode(text_chunks, convert_to_numpy=True)
|
30 |
-
|
31 |
-
# Create FAISS index
|
32 |
-
def create_faiss_index(embeddings):
|
33 |
-
dimension = embeddings.shape[1]
|
34 |
-
index = faiss.IndexFlatL2(dimension)
|
35 |
-
index.add(embeddings)
|
36 |
-
return index
|
37 |
-
|
38 |
-
# Retrieve relevant context
|
39 |
-
def retrieve_context(query, index, text_chunks, top_k=
|
40 |
-
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
41 |
-
distances, indices = index.search(query_embedding, top_k)
|
42 |
-
retrieved_text = "\n".join([text_chunks[i] for i in indices[0]])
|
43 |
-
return retrieved_text
|
44 |
-
|
45 |
-
# Generate Answer
|
46 |
-
def answer_question(query, faiss_index, book_chunks):
|
47 |
-
context = retrieve_context(query, faiss_index, book_chunks)
|
48 |
-
result = qa_pipeline(question=query, context=context)
|
49 |
-
return result["answer"]
|
50 |
-
|
51 |
-
# Streamlit UI
|
52 |
-
st.title("📖 Book-Based Question Answering System")
|
53 |
-
st.write("Upload a book (PDF) and ask any question!")
|
54 |
-
|
55 |
-
# File uploader
|
56 |
-
uploaded_file = st.file_uploader("Upload a PDF book", type="pdf")
|
57 |
-
|
58 |
-
if uploaded_file:
|
59 |
-
st.write("Processing book...")
|
60 |
-
book_text = extract_text_from_pdf(uploaded_file)
|
61 |
-
book_chunks = chunk_text(book_text)
|
62 |
-
chunk_embeddings = generate_embeddings(book_chunks)
|
63 |
-
faiss_index = create_faiss_index(chunk_embeddings)
|
64 |
-
st.success(f"Book processed successfully! ({len(book_chunks)} chunks)")
|
65 |
-
|
66 |
-
query = st.text_input("Ask a question based on the book:")
|
67 |
-
if query:
|
68 |
-
answer = answer_question(query, faiss_index, book_chunks)
|
69 |
-
st.write(f"**Answer:** {answer}")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pdfplumber
|
3 |
+
import faiss
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import pipeline
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
|
10 |
+
# Load embedding model
|
11 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
12 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
13 |
+
|
14 |
+
# Function to extract text from PDF
|
15 |
+
def extract_text_from_pdf(pdf_file):
|
16 |
+
text = ""
|
17 |
+
with pdfplumber.open(pdf_file) as pdf:
|
18 |
+
for page in pdf.pages:
|
19 |
+
text += page.extract_text() + "\n"
|
20 |
+
return text.strip()
|
21 |
+
|
22 |
+
# Chunking text
|
23 |
+
def chunk_text(text, chunk_size=500, overlap=100):
|
24 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
25 |
+
return splitter.split_text(text)
|
26 |
+
|
27 |
+
# Generate embeddings
|
28 |
+
def generate_embeddings(text_chunks):
|
29 |
+
return embedding_model.encode(text_chunks, convert_to_numpy=True)
|
30 |
+
|
31 |
+
# Create FAISS index
|
32 |
+
def create_faiss_index(embeddings):
|
33 |
+
dimension = embeddings.shape[1]
|
34 |
+
index = faiss.IndexFlatL2(dimension)
|
35 |
+
index.add(embeddings)
|
36 |
+
return index
|
37 |
+
|
38 |
+
# Retrieve relevant context (Increased context size)
|
39 |
+
def retrieve_context(query, index, text_chunks, top_k=7):
|
40 |
+
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
41 |
+
distances, indices = index.search(query_embedding, top_k)
|
42 |
+
retrieved_text = "\n".join([text_chunks[i] for i in indices[0]])
|
43 |
+
return retrieved_text
|
44 |
+
|
45 |
+
# Generate Answer (Allow longer answers)
|
46 |
+
def answer_question(query, faiss_index, book_chunks):
|
47 |
+
context = retrieve_context(query, faiss_index, book_chunks)
|
48 |
+
result = qa_pipeline(question=query, context=context, max_answer_len=150)
|
49 |
+
return result["answer"] + "\n\n**Additional Context:** " + context[:400] + "..."
|
50 |
+
|
51 |
+
# Streamlit UI
|
52 |
+
st.title("📖 Book-Based Question Answering System")
|
53 |
+
st.write("Upload a book (PDF) and ask any question!")
|
54 |
+
|
55 |
+
# File uploader
|
56 |
+
uploaded_file = st.file_uploader("Upload a PDF book", type="pdf")
|
57 |
+
|
58 |
+
if uploaded_file:
|
59 |
+
st.write("Processing book...")
|
60 |
+
book_text = extract_text_from_pdf(uploaded_file)
|
61 |
+
book_chunks = chunk_text(book_text)
|
62 |
+
chunk_embeddings = generate_embeddings(book_chunks)
|
63 |
+
faiss_index = create_faiss_index(chunk_embeddings)
|
64 |
+
st.success(f"Book processed successfully! ({len(book_chunks)} chunks)")
|
65 |
+
|
66 |
+
query = st.text_input("Ask a question based on the book:")
|
67 |
+
if query:
|
68 |
+
answer = answer_question(query, faiss_index, book_chunks)
|
69 |
+
st.write(f"**Answer:** {answer}")
|