Spaces:
Sleeping
Sleeping
File size: 1,936 Bytes
c7a5805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import streamlit as st
import requests
import pandas as pd
# β
Replace with your Hugging Face backend URL
# β
Use the deployed backend Space URL
BACKEND_URL = "https://manishkumaryadav-news-summarize.hf.space/analyze"
st.title("π News Sentiment Analysis & TTS in Hindi")
# Input field for company name
company_name = st.text_input("Enter Company Name", "")
if st.button("Analyze"):
if not company_name:
st.warning("β οΈ Please enter a company name.")
else:
st.info(f"π Analyzing news for {company_name}...")
# Send request to Flask backend
response = requests.post(
BACKEND_URL,
json={"company_name": company_name}
)
if response.status_code == 200:
data = response.json()
st.success("β
Analysis Complete!")
# β
Display Sentiment Summary
st.subheader("π Sentiment Summary")
st.json(data["sentiment_summary"])
# β
Display Articles
st.subheader("π° Extracted Articles")
df = pd.DataFrame(data["articles"])
for _, article in df.iterrows():
st.markdown(f"### [{article['title']}]({article['url']})")
st.write(f"**Summary:** {article['summary']}")
st.write("---")
# β
Display Hindi TTS Audio
st.subheader("π Hindi TTS Audio Output")
audio_file_url = f"{BACKEND_URL}/{data['audio_file']}"
st.audio(audio_file_url, format="audio/mp3")
st.download_button(
label="β¬οΈ Download Hindi TTS Audio",
data=requests.get(audio_file_url).content,
file_name=f"{company_name}_TTS.mp3",
mime="audio/mpeg"
)
else:
st.error("β Error analyzing news. Please try again.")
|