Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,11 +5,15 @@ import gradio as gr
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
from transformers import BlipProcessor, BlipForQuestionAnswering
|
|
|
|
| 8 |
|
| 9 |
# Initialize the model and processor
|
| 10 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 11 |
model = BlipForQuestionAnswering.from_pretrained("ManishThota/InstructBlip-VQA")
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
def predict_answer(image, question):
|
| 14 |
# Convert PIL image to RGB if not already
|
| 15 |
image = image.convert("RGB")
|
|
@@ -17,15 +21,20 @@ def predict_answer(image, question):
|
|
| 17 |
# Prepare inputs
|
| 18 |
encoding = processor(image, question, return_tensors="pt")
|
| 19 |
|
| 20 |
-
out = model.generate(**encoding
|
| 21 |
generated_text = processor.decode(out[0], skip_special_tokens=True)
|
| 22 |
|
| 23 |
return generated_text
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def gradio_predict(image, question):
|
| 27 |
-
|
| 28 |
-
return
|
|
|
|
| 29 |
|
| 30 |
# Define the Gradio interface
|
| 31 |
iface = gr.Interface(
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
from transformers import BlipProcessor, BlipForQuestionAnswering
|
| 8 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 9 |
|
| 10 |
# Initialize the model and processor
|
| 11 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 12 |
model = BlipForQuestionAnswering.from_pretrained("ManishThota/InstructBlip-VQA")
|
| 13 |
|
| 14 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
def predict_answer(image, question):
|
| 18 |
# Convert PIL image to RGB if not already
|
| 19 |
image = image.convert("RGB")
|
|
|
|
| 21 |
# Prepare inputs
|
| 22 |
encoding = processor(image, question, return_tensors="pt")
|
| 23 |
|
| 24 |
+
out = model.generate(**encoding)
|
| 25 |
generated_text = processor.decode(out[0], skip_special_tokens=True)
|
| 26 |
|
| 27 |
return generated_text
|
| 28 |
|
| 29 |
|
| 30 |
+
# def gradio_predict(image, question):
|
| 31 |
+
# answer = predict_answer(image, question)
|
| 32 |
+
# return answer
|
| 33 |
+
|
| 34 |
def gradio_predict(image, question):
|
| 35 |
+
future = executor.submit(predict_answer, image, question)
|
| 36 |
+
return future.result()
|
| 37 |
+
|
| 38 |
|
| 39 |
# Define the Gradio interface
|
| 40 |
iface = gr.Interface(
|