Spaces:
Runtime error
Runtime error
Update multi_video_app.py
Browse files- multi_video_app.py +24 -26
multi_video_app.py
CHANGED
@@ -3,37 +3,30 @@ warnings.filterwarnings("ignore")
|
|
3 |
import gradio as gr
|
4 |
import re
|
5 |
from typing import Dict, List
|
6 |
-
import csv
|
7 |
import os
|
8 |
import torch
|
|
|
9 |
from src.video_model import describe_video
|
10 |
from src.utils import parse_string, parse_annotations
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
# Function to save data to a CSV file
|
15 |
def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str:
|
16 |
if not os.path.exists(output_dir):
|
17 |
os.makedirs(output_dir)
|
18 |
|
|
|
|
|
|
|
|
|
19 |
csv_file = os.path.join(output_dir, "video_observations.csv")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
writer.writerow(["video_name", "standing", "hands.free", "indoors", "screen.interaction_yes"])
|
24 |
-
for observation in observations:
|
25 |
-
writer.writerow([
|
26 |
-
observation['video_name'],
|
27 |
-
observation['standing'],
|
28 |
-
observation['hands.free'],
|
29 |
-
observation['indoors'],
|
30 |
-
observation['screen.interaction_yes']
|
31 |
-
])
|
32 |
|
33 |
return csv_file
|
34 |
|
35 |
# Function to process a single video and return the observation data
|
36 |
-
def process_single_video(video_path
|
37 |
video_name = os.path.basename(video_path) # Extract video name from the path
|
38 |
query = "Describe this video in detail and answer the questions"
|
39 |
additional_info = []
|
@@ -57,8 +50,8 @@ def process_single_video(video_path: str, standing, hands, location, screen) ->
|
|
57 |
final_prompt = final_query + " " + end_query
|
58 |
|
59 |
# Assuming your describe_video function handles the video processing
|
60 |
-
|
61 |
-
|
62 |
|
63 |
conditions = {
|
64 |
'standing': (standing, 'standing: 1', 'standing: None'),
|
@@ -71,20 +64,24 @@ def process_single_video(video_path: str, standing, hands, location, screen) ->
|
|
71 |
if not condition:
|
72 |
final_response = final_response.replace(to_replace, replacement)
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
|
|
|
|
|
77 |
|
78 |
# Function to process all videos in a folder
|
79 |
-
def process_multiple_videos(video_files: List[str],
|
80 |
all_observations = []
|
81 |
|
82 |
for video_path in video_files:
|
83 |
-
observation = process_single_video(video_path,
|
84 |
-
if
|
85 |
all_observations.append(observation)
|
86 |
else:
|
87 |
-
print(
|
88 |
|
89 |
# Clear GPU cache
|
90 |
torch.cuda.empty_cache()
|
@@ -94,8 +91,9 @@ def process_multiple_videos(video_files: List[str], sitting, hands, location, sc
|
|
94 |
return "Processing completed. Download the CSV file.", csv_file
|
95 |
|
96 |
# Gradio interface
|
97 |
-
def gradio_interface(video_files,
|
98 |
-
|
|
|
99 |
|
100 |
# Inputs
|
101 |
video_files = gr.File(file_count="multiple", file_types=["video"], label="Upload multiple videos")
|
|
|
3 |
import gradio as gr
|
4 |
import re
|
5 |
from typing import Dict, List
|
|
|
6 |
import os
|
7 |
import torch
|
8 |
+
import pandas as pd
|
9 |
from src.video_model import describe_video
|
10 |
from src.utils import parse_string, parse_annotations
|
11 |
|
12 |
+
# Function to save data to a CSV file using pandas
|
|
|
|
|
13 |
def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str:
|
14 |
if not os.path.exists(output_dir):
|
15 |
os.makedirs(output_dir)
|
16 |
|
17 |
+
# Convert the list of dictionaries to a pandas DataFrame
|
18 |
+
df = pd.DataFrame(observations)
|
19 |
+
|
20 |
+
# Specify the CSV file path
|
21 |
csv_file = os.path.join(output_dir, "video_observations.csv")
|
22 |
|
23 |
+
# Save the DataFrame to a CSV file
|
24 |
+
df.to_csv(csv_file, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
return csv_file
|
27 |
|
28 |
# Function to process a single video and return the observation data
|
29 |
+
def process_single_video(video_path, standing, hands, location, screen) -> Dict:
|
30 |
video_name = os.path.basename(video_path) # Extract video name from the path
|
31 |
query = "Describe this video in detail and answer the questions"
|
32 |
additional_info = []
|
|
|
50 |
final_prompt = final_query + " " + end_query
|
51 |
|
52 |
# Assuming your describe_video function handles the video processing
|
53 |
+
response = describe_video(video_path, final_prompt)
|
54 |
+
final_response = f"<video_name>{video_name}</video_name>" + " \n" + response
|
55 |
|
56 |
conditions = {
|
57 |
'standing': (standing, 'standing: 1', 'standing: None'),
|
|
|
64 |
if not condition:
|
65 |
final_response = final_response.replace(to_replace, replacement)
|
66 |
|
67 |
+
# Parse the response to extract video name and annotations
|
68 |
+
parsed_content = parse_string(final_response, ["video_name", "annotation"])
|
69 |
+
video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None
|
70 |
+
annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {}
|
71 |
|
72 |
+
# Return the observation as a dictionary
|
73 |
+
return {'video_name': video_name, **annotations_dict}
|
74 |
|
75 |
# Function to process all videos in a folder
|
76 |
+
def process_multiple_videos(video_files: List[str], standing, hands, location, screen):
|
77 |
all_observations = []
|
78 |
|
79 |
for video_path in video_files:
|
80 |
+
observation = process_single_video(video_path, standing, hands, location, screen)
|
81 |
+
if observation['video_name']: # Only add valid observations
|
82 |
all_observations.append(observation)
|
83 |
else:
|
84 |
+
print("Error processing video:", video_path) # Log any errors
|
85 |
|
86 |
# Clear GPU cache
|
87 |
torch.cuda.empty_cache()
|
|
|
91 |
return "Processing completed. Download the CSV file.", csv_file
|
92 |
|
93 |
# Gradio interface
|
94 |
+
def gradio_interface(video_files, standing, hands, location, screen):
|
95 |
+
video_file_paths = [video.name for video in video_files] # Extract file paths from uploaded files
|
96 |
+
return process_multiple_videos(video_file_paths, standing, hands, location, screen)
|
97 |
|
98 |
# Inputs
|
99 |
video_files = gr.File(file_count="multiple", file_types=["video"], label="Upload multiple videos")
|