Spaces:
Runtime error
Runtime error
Update multi_video_app.py
Browse files- multi_video_app.py +24 -26
multi_video_app.py
CHANGED
|
@@ -3,37 +3,30 @@ warnings.filterwarnings("ignore")
|
|
| 3 |
import gradio as gr
|
| 4 |
import re
|
| 5 |
from typing import Dict, List
|
| 6 |
-
import csv
|
| 7 |
import os
|
| 8 |
import torch
|
|
|
|
| 9 |
from src.video_model import describe_video
|
| 10 |
from src.utils import parse_string, parse_annotations
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
# Function to save data to a CSV file
|
| 15 |
def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str:
|
| 16 |
if not os.path.exists(output_dir):
|
| 17 |
os.makedirs(output_dir)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
csv_file = os.path.join(output_dir, "video_observations.csv")
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
writer.writerow(["video_name", "standing", "hands.free", "indoors", "screen.interaction_yes"])
|
| 24 |
-
for observation in observations:
|
| 25 |
-
writer.writerow([
|
| 26 |
-
observation['video_name'],
|
| 27 |
-
observation['standing'],
|
| 28 |
-
observation['hands.free'],
|
| 29 |
-
observation['indoors'],
|
| 30 |
-
observation['screen.interaction_yes']
|
| 31 |
-
])
|
| 32 |
|
| 33 |
return csv_file
|
| 34 |
|
| 35 |
# Function to process a single video and return the observation data
|
| 36 |
-
def process_single_video(video_path
|
| 37 |
video_name = os.path.basename(video_path) # Extract video name from the path
|
| 38 |
query = "Describe this video in detail and answer the questions"
|
| 39 |
additional_info = []
|
|
@@ -57,8 +50,8 @@ def process_single_video(video_path: str, standing, hands, location, screen) ->
|
|
| 57 |
final_prompt = final_query + " " + end_query
|
| 58 |
|
| 59 |
# Assuming your describe_video function handles the video processing
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
conditions = {
|
| 64 |
'standing': (standing, 'standing: 1', 'standing: None'),
|
|
@@ -71,20 +64,24 @@ def process_single_video(video_path: str, standing, hands, location, screen) ->
|
|
| 71 |
if not condition:
|
| 72 |
final_response = final_response.replace(to_replace, replacement)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
| 77 |
|
| 78 |
# Function to process all videos in a folder
|
| 79 |
-
def process_multiple_videos(video_files: List[str],
|
| 80 |
all_observations = []
|
| 81 |
|
| 82 |
for video_path in video_files:
|
| 83 |
-
observation = process_single_video(video_path,
|
| 84 |
-
if
|
| 85 |
all_observations.append(observation)
|
| 86 |
else:
|
| 87 |
-
print(
|
| 88 |
|
| 89 |
# Clear GPU cache
|
| 90 |
torch.cuda.empty_cache()
|
|
@@ -94,8 +91,9 @@ def process_multiple_videos(video_files: List[str], sitting, hands, location, sc
|
|
| 94 |
return "Processing completed. Download the CSV file.", csv_file
|
| 95 |
|
| 96 |
# Gradio interface
|
| 97 |
-
def gradio_interface(video_files,
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
# Inputs
|
| 101 |
video_files = gr.File(file_count="multiple", file_types=["video"], label="Upload multiple videos")
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import re
|
| 5 |
from typing import Dict, List
|
|
|
|
| 6 |
import os
|
| 7 |
import torch
|
| 8 |
+
import pandas as pd
|
| 9 |
from src.video_model import describe_video
|
| 10 |
from src.utils import parse_string, parse_annotations
|
| 11 |
|
| 12 |
+
# Function to save data to a CSV file using pandas
|
|
|
|
|
|
|
| 13 |
def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str:
|
| 14 |
if not os.path.exists(output_dir):
|
| 15 |
os.makedirs(output_dir)
|
| 16 |
|
| 17 |
+
# Convert the list of dictionaries to a pandas DataFrame
|
| 18 |
+
df = pd.DataFrame(observations)
|
| 19 |
+
|
| 20 |
+
# Specify the CSV file path
|
| 21 |
csv_file = os.path.join(output_dir, "video_observations.csv")
|
| 22 |
|
| 23 |
+
# Save the DataFrame to a CSV file
|
| 24 |
+
df.to_csv(csv_file, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
return csv_file
|
| 27 |
|
| 28 |
# Function to process a single video and return the observation data
|
| 29 |
+
def process_single_video(video_path, standing, hands, location, screen) -> Dict:
|
| 30 |
video_name = os.path.basename(video_path) # Extract video name from the path
|
| 31 |
query = "Describe this video in detail and answer the questions"
|
| 32 |
additional_info = []
|
|
|
|
| 50 |
final_prompt = final_query + " " + end_query
|
| 51 |
|
| 52 |
# Assuming your describe_video function handles the video processing
|
| 53 |
+
response = describe_video(video_path, final_prompt)
|
| 54 |
+
final_response = f"<video_name>{video_name}</video_name>" + " \n" + response
|
| 55 |
|
| 56 |
conditions = {
|
| 57 |
'standing': (standing, 'standing: 1', 'standing: None'),
|
|
|
|
| 64 |
if not condition:
|
| 65 |
final_response = final_response.replace(to_replace, replacement)
|
| 66 |
|
| 67 |
+
# Parse the response to extract video name and annotations
|
| 68 |
+
parsed_content = parse_string(final_response, ["video_name", "annotation"])
|
| 69 |
+
video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None
|
| 70 |
+
annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {}
|
| 71 |
|
| 72 |
+
# Return the observation as a dictionary
|
| 73 |
+
return {'video_name': video_name, **annotations_dict}
|
| 74 |
|
| 75 |
# Function to process all videos in a folder
|
| 76 |
+
def process_multiple_videos(video_files: List[str], standing, hands, location, screen):
|
| 77 |
all_observations = []
|
| 78 |
|
| 79 |
for video_path in video_files:
|
| 80 |
+
observation = process_single_video(video_path, standing, hands, location, screen)
|
| 81 |
+
if observation['video_name']: # Only add valid observations
|
| 82 |
all_observations.append(observation)
|
| 83 |
else:
|
| 84 |
+
print("Error processing video:", video_path) # Log any errors
|
| 85 |
|
| 86 |
# Clear GPU cache
|
| 87 |
torch.cuda.empty_cache()
|
|
|
|
| 91 |
return "Processing completed. Download the CSV file.", csv_file
|
| 92 |
|
| 93 |
# Gradio interface
|
| 94 |
+
def gradio_interface(video_files, standing, hands, location, screen):
|
| 95 |
+
video_file_paths = [video.name for video in video_files] # Extract file paths from uploaded files
|
| 96 |
+
return process_multiple_videos(video_file_paths, standing, hands, location, screen)
|
| 97 |
|
| 98 |
# Inputs
|
| 99 |
video_files = gr.File(file_count="multiple", file_types=["video"], label="Upload multiple videos")
|