Spaces:
Runtime error
Runtime error
Update src/text_processor.py
Browse files- src/text_processor.py +76 -48
src/text_processor.py
CHANGED
@@ -1,64 +1,92 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from pydantic import BaseModel
|
4 |
-
import
|
|
|
|
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
#
|
9 |
torch.random.manual_seed(0)
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
17 |
pipe = pipeline(
|
18 |
"text-generation",
|
19 |
-
model=
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
# Pydantic class for output validation
|
24 |
class VideoAnalysis(BaseModel):
|
25 |
-
|
26 |
hands_free: int
|
27 |
-
|
28 |
standing: int
|
29 |
|
30 |
-
@
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
- Is the scene indoors?
|
40 |
-
- Are the subject's hands free?
|
41 |
-
- Is there screen interaction by the subject?
|
42 |
-
- Is the subject standing?
|
43 |
-
|
44 |
-
Provide your answers in JSON format like this:
|
45 |
-
{{"indoor": 0, "hands_free": 1, "screen_interaction": 0, "standing": 1}}
|
46 |
-
"""
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
"return_full_text": False,
|
51 |
-
"temperature": 0.0,
|
52 |
-
"do_sample": False,
|
53 |
-
}
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
try:
|
59 |
-
# Attempt to parse and validate the JSON response
|
60 |
-
analysis_result = VideoAnalysis.model_validate_json(json_text)
|
61 |
-
return analysis_result.model_dump_json() # Return as valid JSON
|
62 |
-
except Exception as e:
|
63 |
-
print(f"Error processing LLM output: {e}")
|
64 |
-
return {"error": "Could not process the video description."}
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from pydantic import BaseModel
|
4 |
+
import json
|
5 |
+
import warnings
|
6 |
+
import spaces
|
7 |
|
8 |
+
# Ignore warnings
|
9 |
+
warnings.filterwarnings(action='ignore')
|
10 |
|
11 |
+
# Set random seed
|
12 |
torch.random.manual_seed(0)
|
13 |
+
|
14 |
+
# Define the model path
|
15 |
+
model_path = "microsoft/Phi-3-mini-4k-instruct"
|
16 |
+
device= "cuda"
|
17 |
+
|
18 |
+
# Load the model and pipeline outside the function
|
|
|
19 |
pipe = pipeline(
|
20 |
"text-generation",
|
21 |
+
model=AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_path,
|
23 |
+
device_map=device,
|
24 |
+
torch_dtype="auto",
|
25 |
+
trust_remote_code=True,
|
26 |
+
),
|
27 |
+
tokenizer=AutoTokenizer.from_pretrained(model_path),
|
28 |
+
)
|
29 |
+
|
30 |
+
generation_args = {
|
31 |
+
"max_new_tokens": 50,
|
32 |
+
"return_full_text": False,
|
33 |
+
"temperature": 0.1,
|
34 |
+
"do_sample": True
|
35 |
+
}
|
36 |
+
|
37 |
+
class LLMHelper:
|
38 |
+
def __init__(self, pipeline):
|
39 |
+
self.chatbot = pipeline
|
40 |
+
|
41 |
+
def generate_logic(self, llm_output: str):
|
42 |
+
prompt = f"""
|
43 |
+
Provide the response in json string for the below keys and context based on the description: '{llm_output}'.
|
44 |
+
|
45 |
+
Screen.interaction_yes: This field indicates whether there was an interaction of the person with a screen during the activity. A value of 1 means there was screen interaction (Yes), and a value of 0 means there was no screen interaction (No).
|
46 |
+
Hands.free: This field indicates whether the person's hands were free during the activity. A value of 1 means the person was not holding anything (Yes), indicating free hands. A value of 0 means the person was holding something (No), indicating the hands were not free.
|
47 |
+
Indoors: This field indicates whether the activity took place indoors. A value of 1 means the activity occurred inside a building or enclosed space (Yes), and a value of 0 means the activity took place outside (No).
|
48 |
+
Standing: This field indicates whether the person was standing during the activity. A value of 1 means the person was standing (Yes), and a value of 0 means the person was not standing (No).
|
49 |
+
"""
|
50 |
+
|
51 |
+
messages = [
|
52 |
+
{"role": "system", "content": "Please answer questions just based on this information: " + llm_output},
|
53 |
+
{"role": "user", "content": prompt},
|
54 |
+
]
|
55 |
+
|
56 |
+
response = self.chatbot(messages, **generation_args)
|
57 |
+
generated_text = response[0]['generated_text']
|
58 |
+
# Extract JSON from the generated text
|
59 |
+
start_index = generated_text.find('{')
|
60 |
+
end_index = generated_text.rfind('}') + 1
|
61 |
+
json_str = generated_text[start_index:end_index]
|
62 |
+
return json_str
|
63 |
|
|
|
64 |
class VideoAnalysis(BaseModel):
|
65 |
+
screen_interaction_yes: int
|
66 |
hands_free: int
|
67 |
+
indoors: int
|
68 |
standing: int
|
69 |
|
70 |
+
@classmethod
|
71 |
+
def from_llm_output(cls, llm_output: str, generated_logic: str) -> 'VideoAnalysis':
|
72 |
+
logic_dict = json.loads(generated_logic)
|
73 |
+
return cls(
|
74 |
+
screen_interaction_yes=logic_dict.get("Screen.interaction_yes", 0),
|
75 |
+
hands_free=logic_dict.get("Hands.free", 0),
|
76 |
+
indoors=logic_dict.get("Indoors", 0),
|
77 |
+
standing=logic_dict.get("Standing", 0)
|
78 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Create an instance of LLMHelper (using the already loaded pipeline)
|
81 |
+
llm_helper = LLMHelper(pipe)
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
def process_llm_output(input: LLMInput) -> Dict:
|
84 |
+
# Generate the logic from the LLM output
|
85 |
+
generated_logic = llm_helper.generate_logic(input.llm_output)
|
86 |
+
|
87 |
+
# Create the structured output
|
88 |
+
structured_output = VideoAnalysis.from_llm_output(input.llm_output, generated_logic)
|
89 |
+
|
90 |
+
# Return the structured output as a dictionary
|
91 |
+
return structured_output.dict()
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|