File size: 5,456 Bytes
b3ca871
 
 
50ab392
 
 
05789a2
b3ca871
ebf0da3
b3ca871
05789a2
 
 
 
1e7eeba
b3ca871
 
 
 
 
 
 
 
 
0d8ccd7
b68921c
7f58602
b68921c
cccf89a
 
b3ca871
78e2d46
05789a2
b3ca871
c935ba3
05789a2
 
b3ca871
 
50ab392
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ca871
 
 
 
50ab392
 
 
 
 
 
 
 
 
 
 
b3ca871
 
 
 
 
 
 
 
 
ebf0da3
b3ca871
50ab392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
import pandas as pd
from src.video_model import describe_video  
from src.utils import parse_string, parse_annotations
import os

# --- Function to construct the final query --- 
def process_video_and_questions(video, sitting, hands, location, screen):
    # Extract the video name (filename)
    video_name = os.path.basename(video)
    
    # Construct the query with the video name included
    query = f"Describe the video in detail and answer the questions"
    additional_info = []
    if sitting:
        additional_info.append("Is the subject in the video standing or sitting?")
    if hands:
        additional_info.append("Is the subject holding any object in their hands, if so the hands are not free else they are free?")
    if location:
        additional_info.append("Is the subject present indoors or outdoors?")
    if screen:
        additional_info.append("Is the subject interacting with a screen in the background by facing the screen?")
    end_query = """ Provide the results in <annotation> tags for example with 0 being False, 1 being True and None means there is no info present\n
    <annotation>indoors: 0</annotation>
    <annotation>standing: 1</annotation>
    <annotation>hands.free: 1</annotation>
    <annotation>screen.interaction_yes: 0</annotation>
    <annotation>screen.interaction_yes: None</annotation>""" 
    final_query = query + " " + " ".join(additional_info)
    final_prompt = final_query + " " + end_query
    
    # Assuming your describe_video function handles the video processing
    response = describe_video(video, final_prompt)
    final_response = f"<video_name>{video_name}</video_name>" + " " + response
    return final_response 


def output_to_csv(final_response):
    # Parse the string to get the content
    parsed_content = parse_string(final_response, ["video_name", "annotation"])
    
    # Extract video name (assuming there's only one video name)
    video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None
    
    # Convert the list of annotations into a dictionary
    annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {}
    
    # Combine the video name and annotation dictionary into a single row
    df = pd.DataFrame([{'video_name': video_name, **annotations_dict}])

    return df


# Examples for the interface
examples = [
    ["videos/2016-01-01_0100_US_KNBC_Channel_4_News_1867.16-1871.38_now.mp4", True, False, True, False],
    ["videos/2016-01-01_0200_US_KNBC_Channel_4_News_1329.12-1333.29_tonight.mp4", False, True, True, True],
    ["videos/2016-01-01_0830_US_KNBC_Tonight_Show_with_Jimmy_Fallon_725.45-729.76_tonight.mp4", True, False, False, True],
    ["videos/2016-01-01_0200_US_KOCE_The_PBS_Newshour_577.03-581.31_tonight.mp4", False, True, True, False],
    ["videos/2016-01-01_1400_US_KTTV-FOX_Morning_News_at_6AM_1842.36-1846.68_this_year.mp4", True, True, False, False],
    ["videos/2016-01-02_0735_US_KCBS_Late_Show_with_Stephen_Colbert_285.94-290.67_this_year.mp4", False, True, True, True],
    ["videos/2016-01-13_2200_US_KTTV-FOX_The_Doctor_Oz_Show_1709.79-1714.17_this_month.mp4", True, False, False, True],
    ["videos/2016-01-01_1400_US_KTTV-FOX_Morning_News_at_6AM_1842.36-1846.68_this_year.mp4", False, True, True, False],
    ["videos/2016-01-01_1300_US_KNBC_Today_in_LA_at_5am_12.46-16.95_this_morning.mp4", True, False, False, True],
    ["videos/2016-01-05_0200_US_KNBC_Channel_4_News_1561.29-1565.95_next_week.mp4", False, True, True, False],
    ["videos/2016-01-28_0700_US_KNBC_Channel_4_News_at_11PM_629.56-633.99_in_the_future.mp4", True, False, False, True]
]

# Title, description, and article for the interface
title = "GSoC Super Raid Annotator"
description = "Annotate Videos"
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"

custom_theme = gr.themes.Soft(
    primary_hue="red", 
    secondary_hue="red")

with gr.Blocks(theme=custom_theme) as demo:
    gr.Markdown(f"# {title}")
    gr.Markdown(description)
    gr.Markdown(article)
    
    with gr.Row():
        with gr.Column():
            video = gr.Video(label="Video")
            sitting = gr.Checkbox(label="Sitting/Standing")
            hands = gr.Checkbox(label="Hands Free/Not Free")
            location = gr.Checkbox(label="Indoors/Outdoors")
            screen = gr.Checkbox(label="Screen Interaction")
            submit_btn = gr.Button("Generate Annotations")
            generate_csv_btn = gr.Button("Generate CSV")
        
        with gr.Column():
            response = gr.Textbox(label="Video Description", show_label=True, show_copy_button=True)
            csv_output = gr.DataFrame(label="CSV Output", headers=["video_name", "annotation"])
    
    # Event handling for the Submit button
    submit_btn.click(
        fn=process_video_and_questions,
        inputs=[video, sitting, hands, location, screen],
        outputs=response
    )
    
    # Event handling for the Generate CSV button
    generate_csv_btn.click(
        fn=output_to_csv,
        inputs=response,
        outputs=csv_output
    )
    
    gr.Examples(examples=examples, inputs=[video, sitting, hands, location, screen])
    
demo.launch(debug=False)