Spaces:
Paused
Paused
| # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. | |
| # Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved. | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from dataclasses import dataclass | |
| import torch | |
| import json | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| from safetensors import safe_open | |
| from safetensors.torch import load_file as load_sft | |
| from .model import Flux, FluxParams | |
| from .modules.autoencoder import AutoEncoder, AutoEncoderParams | |
| from .modules.conditioner import HFEmbedder | |
| import re | |
| from uno.flux.modules.layers import DoubleStreamBlockLoraProcessor, SingleStreamBlockLoraProcessor | |
| def load_model(ckpt, device='cpu'): | |
| if ckpt.endswith('safetensors'): | |
| from safetensors import safe_open | |
| pl_sd = {} | |
| with safe_open(ckpt, framework="pt", device=device) as f: | |
| for k in f.keys(): | |
| pl_sd[k] = f.get_tensor(k) | |
| else: | |
| pl_sd = torch.load(ckpt, map_location=device) | |
| return pl_sd | |
| def load_safetensors(path): | |
| tensors = {} | |
| with safe_open(path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| tensors[key] = f.get_tensor(key) | |
| return tensors | |
| def get_lora_rank(checkpoint): | |
| for k in checkpoint.keys(): | |
| if k.endswith(".down.weight"): | |
| return checkpoint[k].shape[0] | |
| def load_checkpoint(local_path, repo_id, name): | |
| if local_path is not None: | |
| if '.safetensors' in local_path: | |
| print(f"Loading .safetensors checkpoint from {local_path}") | |
| checkpoint = load_safetensors(local_path) | |
| else: | |
| print(f"Loading checkpoint from {local_path}") | |
| checkpoint = torch.load(local_path, map_location='cpu') | |
| elif repo_id is not None and name is not None: | |
| print(f"Loading checkpoint {name} from repo id {repo_id}") | |
| checkpoint = load_from_repo_id(repo_id, name) | |
| else: | |
| raise ValueError( | |
| "LOADING ERROR: you must specify local_path or repo_id with name in HF to download" | |
| ) | |
| return checkpoint | |
| def c_crop(image): | |
| width, height = image.size | |
| new_size = min(width, height) | |
| left = (width - new_size) / 2 | |
| top = (height - new_size) / 2 | |
| right = (width + new_size) / 2 | |
| bottom = (height + new_size) / 2 | |
| return image.crop((left, top, right, bottom)) | |
| def pad64(x): | |
| return int(np.ceil(float(x) / 64.0) * 64 - x) | |
| def HWC3(x): | |
| assert x.dtype == np.uint8 | |
| if x.ndim == 2: | |
| x = x[:, :, None] | |
| assert x.ndim == 3 | |
| H, W, C = x.shape | |
| assert C == 1 or C == 3 or C == 4 | |
| if C == 3: | |
| return x | |
| if C == 1: | |
| return np.concatenate([x, x, x], axis=2) | |
| if C == 4: | |
| color = x[:, :, 0:3].astype(np.float32) | |
| alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
| y = color * alpha + 255.0 * (1.0 - alpha) | |
| y = y.clip(0, 255).astype(np.uint8) | |
| return y | |
| class ModelSpec: | |
| params: FluxParams | |
| ae_params: AutoEncoderParams | |
| ckpt_path: str | None | |
| ae_path: str | None | |
| repo_id: str | None | |
| repo_flow: str | None | |
| repo_ae: str | None | |
| repo_id_ae: str | None | |
| configs = { | |
| "flux-dev": ModelSpec( | |
| repo_id="black-forest-labs/FLUX.1-dev", | |
| repo_id_ae="black-forest-labs/FLUX.1-dev", | |
| repo_flow="flux1-dev.safetensors", | |
| repo_ae="ae.safetensors", | |
| ckpt_path=os.getenv("FLUX_DEV"), | |
| params=FluxParams( | |
| in_channels=64, | |
| vec_in_dim=768, | |
| context_in_dim=4096, | |
| hidden_size=3072, | |
| mlp_ratio=4.0, | |
| num_heads=24, | |
| depth=19, | |
| depth_single_blocks=38, | |
| axes_dim=[16, 56, 56], | |
| theta=10_000, | |
| qkv_bias=True, | |
| guidance_embed=True, | |
| ), | |
| ae_path=os.getenv("AE"), | |
| ae_params=AutoEncoderParams( | |
| resolution=256, | |
| in_channels=3, | |
| ch=128, | |
| out_ch=3, | |
| ch_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| z_channels=16, | |
| scale_factor=0.3611, | |
| shift_factor=0.1159, | |
| ), | |
| ), | |
| "flux-dev-fp8": ModelSpec( | |
| repo_id="black-forest-labs/FLUX.1-dev", | |
| repo_id_ae="black-forest-labs/FLUX.1-dev", | |
| repo_flow="flux1-dev.safetensors", | |
| repo_ae="ae.safetensors", | |
| ckpt_path=os.getenv("FLUX_DEV_FP8"), | |
| params=FluxParams( | |
| in_channels=64, | |
| vec_in_dim=768, | |
| context_in_dim=4096, | |
| hidden_size=3072, | |
| mlp_ratio=4.0, | |
| num_heads=24, | |
| depth=19, | |
| depth_single_blocks=38, | |
| axes_dim=[16, 56, 56], | |
| theta=10_000, | |
| qkv_bias=True, | |
| guidance_embed=True, | |
| ), | |
| ae_path=os.getenv("AE"), | |
| ae_params=AutoEncoderParams( | |
| resolution=256, | |
| in_channels=3, | |
| ch=128, | |
| out_ch=3, | |
| ch_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| z_channels=16, | |
| scale_factor=0.3611, | |
| shift_factor=0.1159, | |
| ), | |
| ), | |
| "flux-schnell": ModelSpec( | |
| repo_id="black-forest-labs/FLUX.1-schnell", | |
| repo_id_ae="black-forest-labs/FLUX.1-dev", | |
| repo_flow="flux1-schnell.safetensors", | |
| repo_ae="ae.safetensors", | |
| ckpt_path=os.getenv("FLUX_SCHNELL"), | |
| params=FluxParams( | |
| in_channels=64, | |
| vec_in_dim=768, | |
| context_in_dim=4096, | |
| hidden_size=3072, | |
| mlp_ratio=4.0, | |
| num_heads=24, | |
| depth=19, | |
| depth_single_blocks=38, | |
| axes_dim=[16, 56, 56], | |
| theta=10_000, | |
| qkv_bias=True, | |
| guidance_embed=False, | |
| ), | |
| ae_path=os.getenv("AE"), | |
| ae_params=AutoEncoderParams( | |
| resolution=256, | |
| in_channels=3, | |
| ch=128, | |
| out_ch=3, | |
| ch_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| z_channels=16, | |
| scale_factor=0.3611, | |
| shift_factor=0.1159, | |
| ), | |
| ), | |
| } | |
| def print_load_warning(missing: list[str], unexpected: list[str]) -> None: | |
| if len(missing) > 0 and len(unexpected) > 0: | |
| print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
| print("\n" + "-" * 79 + "\n") | |
| print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
| elif len(missing) > 0: | |
| print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
| elif len(unexpected) > 0: | |
| print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
| def load_from_repo_id(repo_id, checkpoint_name): | |
| ckpt_path = hf_hub_download(repo_id, checkpoint_name) | |
| sd = load_sft(ckpt_path, device='cpu') | |
| return sd | |
| def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True): | |
| # Loading Flux | |
| print("Init model") | |
| ckpt_path = configs[name].ckpt_path | |
| if ( | |
| ckpt_path is None | |
| and configs[name].repo_id is not None | |
| and configs[name].repo_flow is not None | |
| and hf_download | |
| ): | |
| ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow) | |
| with torch.device("meta" if ckpt_path is not None else device): | |
| model = Flux(configs[name].params).to(torch.bfloat16) | |
| if ckpt_path is not None: | |
| print("Loading checkpoint") | |
| # load_sft doesn't support torch.device | |
| sd = load_model(ckpt_path, device=str(device)) | |
| missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) | |
| print_load_warning(missing, unexpected) | |
| return model | |
| def load_flow_model_only_lora( | |
| name: str, | |
| device: str | torch.device = "cuda", | |
| hf_download: bool = True, | |
| lora_rank: int = 16, | |
| use_fp8: bool = False | |
| ): | |
| # Loading Flux | |
| print("Init model") | |
| ckpt_path = configs[name].ckpt_path | |
| if ( | |
| ckpt_path is None | |
| and configs[name].repo_id is not None | |
| and configs[name].repo_flow is not None | |
| and hf_download | |
| ): | |
| ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors")) | |
| if hf_download: | |
| try: | |
| lora_ckpt_path = hf_hub_download("bytedance-research/UNO", "dit_lora.safetensors") | |
| except: | |
| lora_ckpt_path = os.environ.get("LORA", None) | |
| else: | |
| lora_ckpt_path = os.environ.get("LORA", None) | |
| with torch.device("meta" if ckpt_path is not None else device): | |
| model = Flux(configs[name].params) | |
| model = set_lora(model, lora_rank, device="meta" if lora_ckpt_path is not None else device) | |
| if ckpt_path is not None: | |
| print("Loading lora") | |
| lora_sd = load_sft(lora_ckpt_path, device=str(device)) if lora_ckpt_path.endswith("safetensors")\ | |
| else torch.load(lora_ckpt_path, map_location='cpu') | |
| print("Loading main checkpoint") | |
| # load_sft doesn't support torch.device | |
| if ckpt_path.endswith('safetensors'): | |
| if use_fp8: | |
| print( | |
| "####\n" | |
| "We are in fp8 mode right now, since the fp8 checkpoint of XLabs-AI/flux-dev-fp8 seems broken\n" | |
| "we convert the fp8 checkpoint on flight from bf16 checkpoint\n" | |
| "If your storage is constrained" | |
| "you can save the fp8 checkpoint and replace the bf16 checkpoint by yourself\n" | |
| ) | |
| sd = load_sft(ckpt_path, device="cpu") | |
| sd = {k: v.to(dtype=torch.float8_e4m3fn, device=device) for k, v in sd.items()} | |
| else: | |
| sd = load_sft(ckpt_path, device=str(device)) | |
| sd.update(lora_sd) | |
| missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) | |
| else: | |
| dit_state = torch.load(ckpt_path, map_location='cpu') | |
| sd = {} | |
| for k in dit_state.keys(): | |
| sd[k.replace('module.','')] = dit_state[k] | |
| sd.update(lora_sd) | |
| missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) | |
| model.to(str(device)) | |
| print_load_warning(missing, unexpected) | |
| return model | |
| def set_lora( | |
| model: Flux, | |
| lora_rank: int, | |
| double_blocks_indices: list[int] | None = None, | |
| single_blocks_indices: list[int] | None = None, | |
| device: str | torch.device = "cpu", | |
| ) -> Flux: | |
| double_blocks_indices = list(range(model.params.depth)) if double_blocks_indices is None else double_blocks_indices | |
| single_blocks_indices = list(range(model.params.depth_single_blocks)) if single_blocks_indices is None \ | |
| else single_blocks_indices | |
| lora_attn_procs = {} | |
| with torch.device(device): | |
| for name, attn_processor in model.attn_processors.items(): | |
| match = re.search(r'\.(\d+)\.', name) | |
| if match: | |
| layer_index = int(match.group(1)) | |
| if name.startswith("double_blocks") and layer_index in double_blocks_indices: | |
| lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=model.params.hidden_size, rank=lora_rank) | |
| elif name.startswith("single_blocks") and layer_index in single_blocks_indices: | |
| lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=model.params.hidden_size, rank=lora_rank) | |
| else: | |
| lora_attn_procs[name] = attn_processor | |
| model.set_attn_processor(lora_attn_procs) | |
| return model | |
| def load_flow_model_quintized(name: str, device: str | torch.device = "cuda", hf_download: bool = True): | |
| # Loading Flux | |
| from optimum.quanto import requantize | |
| print("Init model") | |
| ckpt_path = configs[name].ckpt_path | |
| if ( | |
| ckpt_path is None | |
| and configs[name].repo_id is not None | |
| and configs[name].repo_flow is not None | |
| and hf_download | |
| ): | |
| ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow) | |
| # json_path = hf_hub_download(configs[name].repo_id, 'flux_dev_quantization_map.json') | |
| model = Flux(configs[name].params).to(torch.bfloat16) | |
| print("Loading checkpoint") | |
| # load_sft doesn't support torch.device | |
| sd = load_sft(ckpt_path, device='cpu') | |
| sd = {k: v.to(dtype=torch.float8_e4m3fn, device=device) for k, v in sd.items()} | |
| model.load_state_dict(sd, assign=True) | |
| return model | |
| with open(json_path, "r") as f: | |
| quantization_map = json.load(f) | |
| print("Start a quantization process...") | |
| requantize(model, sd, quantization_map, device=device) | |
| print("Model is quantized!") | |
| return model | |
| def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder: | |
| # max length 64, 128, 256 and 512 should work (if your sequence is short enough) | |
| version = os.environ.get("T5", "xlabs-ai/xflux_text_encoders") | |
| return HFEmbedder(version, max_length=max_length, torch_dtype=torch.bfloat16).to(device) | |
| def load_clip(device: str | torch.device = "cuda") -> HFEmbedder: | |
| version = os.environ.get("CLIP", "openai/clip-vit-large-patch14") | |
| return HFEmbedder(version, max_length=77, torch_dtype=torch.bfloat16).to(device) | |
| def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder: | |
| ckpt_path = configs[name].ae_path | |
| if ( | |
| ckpt_path is None | |
| and configs[name].repo_id is not None | |
| and configs[name].repo_ae is not None | |
| and hf_download | |
| ): | |
| ckpt_path = hf_hub_download(configs[name].repo_id_ae, configs[name].repo_ae) | |
| # Loading the autoencoder | |
| print("Init AE") | |
| with torch.device("meta" if ckpt_path is not None else device): | |
| ae = AutoEncoder(configs[name].ae_params) | |
| if ckpt_path is not None: | |
| sd = load_sft(ckpt_path, device=str(device)) | |
| missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True) | |
| print_load_warning(missing, unexpected) | |
| return ae |