Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import subprocess | |
import streamlit as st | |
import io | |
import pypdfium2 | |
from PIL import Image | |
import logging | |
# 设置日志记录器 | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def clone_repo(): | |
# 从环境变量中获取 GitHub Token | |
github_token = os.getenv('GH_TOKEN') | |
if github_token is None: | |
logger.error("GitHub token is not set. Please set the GH_TOKEN secret in your Space settings.") | |
return False | |
# 使用 GitHub Token 进行身份验证并克隆仓库 | |
clone_command = f'git clone https://{github_token}@github.com/mamba-ai/invoice_agent.git' | |
repo_dir = 'invoice_agent' | |
if os.path.exists(repo_dir): | |
logger.warning("Repository already exists.") | |
# 将仓库路径添加到 Python 模块搜索路径中 | |
# logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path") | |
# sys.path.append(os.path.abspath(repo_dir)) | |
return True | |
else: | |
logger.info("Cloning repository...") | |
result = subprocess.run(clone_command, shell=True, capture_output=True, text=True) | |
if result.returncode == 0: | |
logger.warning("Repository cloned successfully.") | |
repo_dir = 'invoice_agent' | |
# 将仓库路径添加到 Python 模块搜索路径中 | |
sys.path.append(os.path.abspath(repo_dir)) | |
logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path") | |
return True | |
else: | |
logger.error(f"Failed to clone repository: {result.stderr}") | |
return False | |
if clone_repo(): | |
# 克隆成功后导入模块 | |
import invoice_agent.agent as ia | |
# from invoice_agent.agent import load_models, get_ocr_predictions, get_json_result | |
def open_pdf(pdf_file): | |
stream = io.BytesIO(pdf_file.getvalue()) | |
return pypdfium2.PdfDocument(stream) | |
def get_page_image(pdf_file, page_num, dpi=96): | |
doc = open_pdf(pdf_file) | |
renderer = doc.render( | |
pypdfium2.PdfBitmap.to_pil, | |
page_indices=[page_num - 1], | |
scale=dpi / 72, | |
) | |
png = list(renderer)[0] | |
png_image = png.convert("RGB") | |
return png_image | |
def page_count(pdf_file): | |
doc = open_pdf(pdf_file) | |
return len(doc) | |
st.set_page_config(layout="wide") | |
models = ia.load_models() | |
st.title(""" | |
受領した請求書を自動で電子化 (Demo) | |
""") | |
col1, _, col2 = st.columns([.45, 0.1, .45]) | |
in_file = st.sidebar.file_uploader( | |
"PDFファイルまたは画像:", | |
type=["pdf", "png", "jpg", "jpeg", "gif", "webp"], | |
) | |
if in_file is None: | |
st.stop() | |
filetype = in_file.type | |
whole_image = False | |
if "pdf" in filetype: | |
page_count = page_count(in_file) | |
page_number = st.sidebar.number_input(f"ページ番号 {page_count}:", min_value=1, value=1, max_value=page_count) | |
pil_image = get_page_image(in_file, page_number) | |
else: | |
pil_image = Image.open(in_file).convert("RGB") | |
text_rec = st.sidebar.button("認識開始") | |
if pil_image is None: | |
st.stop() | |
with col1: | |
st.write("## アップロードされたファイル") | |
st.image(pil_image, caption="アップロードされたファイル", use_column_width=True) | |
# if 'json_predictions' in st.session_state: | |
# prev_json_predictions = st.session_state.json_predictions | |
# prev_excel_file_path = st.session_state.excel_file_path | |
# with col2: | |
# st.write("## 結果") | |
# # 提供下载链接 | |
# with open(prev_excel_file_path, "rb") as file: | |
# st.download_button( | |
# label="Download Excel", | |
# data=file, | |
# file_name="output.xlsx", | |
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" | |
# ) | |
# st.write("解析後の内容:") | |
# st.json(prev_json_predictions) | |
if text_rec: | |
with col2: | |
st.write("## 結果") | |
# Placeholder for status indicator | |
status_placeholder = st.empty() | |
with st.spinner('現在ファイルを解析中です'): | |
# Simulate model running time | |
# time.sleep(5) # Replace this with actual model running code | |
# predictions = ia.get_ocr_predictions(pil_image, models) | |
# json_predictions = ia.get_json_result(predictions) | |
json_predictions = ia.get_json_result_v2(pil_image, models) | |
st.session_state.json_predictions = json_predictions | |
# Convert JSON to Excel | |
# excel_file_path = "output.xlsx" | |
# st.session_state.excel_file_path = excel_file_path | |
# ia.json_to_excel_with_links(json_predictions, excel_file_path) | |
# After model finishes | |
status_placeholder.success('ファイルの解析が完了しました!') | |
# 提供下载链接 | |
# with open(excel_file_path, "rb") as file: | |
# st.download_button( | |
# label="Download Excel", | |
# data=file, | |
# file_name="output.xlsx", | |
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" | |
# ) | |
# Display the result | |
st.write("解析後の内容:") | |
st.json(json_predictions) | |
# st.write(predictions) | |