MambaInvoice / app.py
Jiang Xiaolan
update json prediction
919f8f8
raw
history blame
5.77 kB
import os
import sys
import subprocess
import streamlit as st
import io
import pypdfium2
from PIL import Image
import logging
# 设置日志记录器
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def clone_repo():
# 从环境变量中获取 GitHub Token
github_token = os.getenv('GH_TOKEN')
if github_token is None:
logger.error("GitHub token is not set. Please set the GH_TOKEN secret in your Space settings.")
return False
# 使用 GitHub Token 进行身份验证并克隆仓库
clone_command = f'git clone https://{github_token}@github.com/mamba-ai/invoice_agent.git'
repo_dir = 'invoice_agent'
if os.path.exists(repo_dir):
logger.warning("Repository already exists.")
# 将仓库路径添加到 Python 模块搜索路径中
# logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
# sys.path.append(os.path.abspath(repo_dir))
return True
else:
logger.info("Cloning repository...")
result = subprocess.run(clone_command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
logger.warning("Repository cloned successfully.")
repo_dir = 'invoice_agent'
# 将仓库路径添加到 Python 模块搜索路径中
sys.path.append(os.path.abspath(repo_dir))
logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
return True
else:
logger.error(f"Failed to clone repository: {result.stderr}")
return False
if clone_repo():
# 克隆成功后导入模块
import invoice_agent.agent as ia
# from invoice_agent.agent import load_models, get_ocr_predictions, get_json_result
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
st.set_page_config(layout="wide")
models = ia.load_models()
st.title("""
受領した請求書を自動で電子化 (Demo)
""")
col1, _, col2 = st.columns([.45, 0.1, .45])
in_file = st.sidebar.file_uploader(
"PDFファイルまたは画像:",
type=["pdf", "png", "jpg", "jpeg", "gif", "webp"],
)
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"ページ番号 {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = Image.open(in_file).convert("RGB")
text_rec = st.sidebar.button("認識開始")
if pil_image is None:
st.stop()
with col1:
st.write("## アップロードされたファイル")
st.image(pil_image, caption="アップロードされたファイル", use_column_width=True)
# if 'json_predictions' in st.session_state:
# prev_json_predictions = st.session_state.json_predictions
# prev_excel_file_path = st.session_state.excel_file_path
# with col2:
# st.write("## 結果")
# # 提供下载链接
# with open(prev_excel_file_path, "rb") as file:
# st.download_button(
# label="Download Excel",
# data=file,
# file_name="output.xlsx",
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
# )
# st.write("解析後の内容:")
# st.json(prev_json_predictions)
if text_rec:
with col2:
st.write("## 結果")
# Placeholder for status indicator
status_placeholder = st.empty()
with st.spinner('現在ファイルを解析中です'):
# Simulate model running time
# time.sleep(5) # Replace this with actual model running code
# predictions = ia.get_ocr_predictions(pil_image, models)
# json_predictions = ia.get_json_result(predictions)
json_predictions = ia.get_json_result_v2(pil_image, models)
st.session_state.json_predictions = json_predictions
# Convert JSON to Excel
# excel_file_path = "output.xlsx"
# st.session_state.excel_file_path = excel_file_path
# ia.json_to_excel_with_links(json_predictions, excel_file_path)
# After model finishes
status_placeholder.success('ファイルの解析が完了しました!')
# 提供下载链接
# with open(excel_file_path, "rb") as file:
# st.download_button(
# label="Download Excel",
# data=file,
# file_name="output.xlsx",
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
# )
# Display the result
st.write("解析後の内容:")
st.json(json_predictions)
# st.write(predictions)