MambaInvoice / app.py
Jiang Xiaolan
add log
7332575
raw
history blame
9.39 kB
import os
import sys
import subprocess
import streamlit as st
import io
import pypdfium2
from PIL import Image, ExifTags
import logging
# 设置日志记录器
# logging.basicConfig(level=logging.INFO)
logging.basicConfig(level=logging.ERROR)
logger = logging.getLogger(__name__)
def resize_image_if_needed(pil_image, max_size_mb=1, max_edge_length=1024):
"""
Detect the size of a PIL image, and if it exceeds 1MB or its long edge is larger than 1024 pixels,
reduce its size to a smaller size.
Args:
pil_image (PIL.Image.Image): The input PIL image.
max_size_mb (int): The maximum allowed size in megabytes.
max_edge_length (int): The maximum allowed length of the long edge in pixels.
Returns:
PIL.Image.Image: The resized PIL image.
"""
# Convert image to bytes and check its size
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='JPEG')
img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
print(f"Image size: {img_size_mb} MB")
# Check if the image size exceeds the maximum allowed size
if img_size_mb > max_size_mb or max(pil_image.size) > max_edge_length:
# Calculate the new size while maintaining the aspect ratio
aspect_ratio = pil_image.width / pil_image.height
if pil_image.width > pil_image.height:
new_width = min(max_edge_length, pil_image.width)
new_height = int(new_width / aspect_ratio)
else:
new_height = min(max_edge_length, pil_image.height)
new_width = int(new_height * aspect_ratio)
# Resize the image
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
# Convert the resized image to bytes and check its size again
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='JPEG')
img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
# If the resized image still exceeds the maximum allowed size, reduce the quality
if img_size_mb > max_size_mb:
quality = 95
while img_size_mb > max_size_mb and quality > 10:
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='JPEG', quality=quality)
img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
quality -= 5
return pil_image
def correct_image_orientation(pil_image):
"""
自动检测PIL Image对象是否包含EXIF信息,如果包含则根据EXIF信息重新修改图片的朝向。
:param pil_image: 输入的PIL Image对象
:return: 返回修正后的PIL Image对象
"""
try:
# 获取EXIF信息
exif = pil_image._getexif()
if exif is not None:
# 查找Orientation的EXIF标签编号
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
# 获取图片的朝向信息
orientation_value = exif.get(orientation)
print(f"Orientation value: {orientation_value}")
# 根据朝向信息调整图片方向
if orientation_value == 3:
pil_image = pil_image.rotate(180, expand=True)
elif orientation_value == 6:
pil_image = pil_image.rotate(270, expand=True)
elif orientation_value == 8:
pil_image = pil_image.rotate(90, expand=True)
except (AttributeError, KeyError, IndexError):
# 如果没有EXIF信息或者没有朝向信息,跳过处理
pass
return pil_image
def clone_repo():
# 从环境变量中获取 GitHub Token
github_token = os.getenv('GH_TOKEN')
if github_token is None:
logger.error("GitHub token is not set. Please set the GH_TOKEN secret in your Space settings.")
return False
# 使用 GitHub Token 进行身份验证并克隆仓库
clone_command = f'git clone https://{github_token}@github.com/mamba-ai/invoice_agent.git'
repo_dir = 'invoice_agent'
if os.path.exists(repo_dir):
logger.warning("Repository already exists.")
# 将仓库路径添加到 Python 模块搜索路径中
# logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
# sys.path.append(os.path.abspath(repo_dir))
return True
else:
logger.info("Cloning repository...")
result = subprocess.run(clone_command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
logger.warning("Repository cloned successfully.")
repo_dir = 'invoice_agent'
# 将仓库路径添加到 Python 模块搜索路径中
sys.path.append(os.path.abspath(repo_dir))
logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
return True
else:
logger.error(f"Failed to clone repository: {result.stderr}")
return False
if clone_repo():
# 克隆成功后导入模块
import invoice_agent.agent as ia
# from invoice_agent.agent import load_models, get_ocr_predictions, get_json_result
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
st.set_page_config(layout="wide")
models = ia.load_models()
st.title("""
受領した請求書を自動で電子化 (Demo)
""")
col1, _, col2 = st.columns([.45, 0.1, .45])
in_file = st.sidebar.file_uploader(
"PDFファイルまたは画像:",
type=["pdf", "png", "jpg", "jpeg", "gif", "webp"],
)
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"ページ番号 {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = Image.open(in_file).convert("RGB")
pil_image = correct_image_orientation(pil_image)
pil_image = resize_image_if_needed(pil_image)
text_rec = st.sidebar.button("認識開始")
if pil_image is None:
st.stop()
with col1:
st.write("## アップロードされたファイル")
st.image(pil_image, caption="アップロードされたファイル", use_column_width=True)
# if 'json_predictions' in st.session_state:
# prev_json_predictions = st.session_state.json_predictions
# prev_excel_file_path = st.session_state.excel_file_path
# with col2:
# st.write("## 結果")
# # 提供下载链接
# with open(prev_excel_file_path, "rb") as file:
# st.download_button(
# label="Download Excel",
# data=file,
# file_name="output.xlsx",
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
# )
# st.write("解析後の内容:")
# st.json(prev_json_predictions)
if text_rec:
with col2:
st.write("## 結果")
# Placeholder for status indicator
status_placeholder = st.empty()
with st.spinner('現在ファイルを解析中です'):
# Simulate model running time
# time.sleep(5) # Replace this with actual model running code
# predictions = ia.get_ocr_predictions(pil_image, models)
# json_predictions = ia.get_json_result(predictions)
json_predictions = ia.get_json_result_v2(pil_image, models)
logger.error(json_predictions)
st.session_state.json_predictions = json_predictions
# Convert JSON to Excel
# excel_file_path = "output.xlsx"
# st.session_state.excel_file_path = excel_file_path
# ia.json_to_excel_with_links(json_predictions, excel_file_path)
# After model finishes
status_placeholder.success('ファイルの解析が完了しました!')
# 提供下载链接
# with open(excel_file_path, "rb") as file:
# st.download_button(
# label="Download Excel",
# data=file,
# file_name="output.xlsx",
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
# )
# Display the result
st.write("解析後の内容:")
st.json(json_predictions)
# st.write(predictions)