Spaces:
Sleeping
Sleeping
File size: 9,046 Bytes
23a6a28 fa4292c 23a6a28 3358ae6 23a6a28 1cbf7e8 fa4292c 23a6a28 b1286d3 23a6a28 b1286d3 23a6a28 fa4292c 1cbf7e8 23a6a28 83d3fd4 1301d4b 23a6a28 577618a 7332575 1301d4b 9cc8bea 23a6a28 1301d4b 9cc8bea 23a6a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import sys
import subprocess
import streamlit as st
import io
import pypdfium2
from PIL import Image, ExifTags
import logging
# 设置日志记录器
# logging.basicConfig(level=logging.INFO)
logging.basicConfig(level=logging.ERROR)
logger = logging.getLogger(__name__)
def resize_image_if_needed(pil_image, max_size_mb=1, max_edge_length=1024):
"""
Detect the size of a PIL image, and if it exceeds 1MB or its long edge is larger than 1024 pixels,
reduce its size to a smaller size.
Args:
pil_image (PIL.Image.Image): The input PIL image.
max_size_mb (int): The maximum allowed size in megabytes.
max_edge_length (int): The maximum allowed length of the long edge in pixels.
Returns:
PIL.Image.Image: The resized PIL image.
"""
# Convert image to bytes and check its size
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='JPEG')
img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
print(f"Image size: {img_size_mb} MB")
# Check if the image size exceeds the maximum allowed size
if img_size_mb > max_size_mb or max(pil_image.size) > max_edge_length:
# Calculate the new size while maintaining the aspect ratio
aspect_ratio = pil_image.width / pil_image.height
if pil_image.width > pil_image.height:
new_width = min(max_edge_length, pil_image.width)
new_height = int(new_width / aspect_ratio)
else:
new_height = min(max_edge_length, pil_image.height)
new_width = int(new_height * aspect_ratio)
# Resize the image
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
# Convert the resized image to bytes and check its size again
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='JPEG')
img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
# If the resized image still exceeds the maximum allowed size, reduce the quality
if img_size_mb > max_size_mb:
quality = 95
while img_size_mb > max_size_mb and quality > 10:
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='JPEG', quality=quality)
img_size_mb = len(img_byte_arr.getvalue()) / (1024 * 1024)
quality -= 5
return pil_image
def correct_image_orientation(pil_image):
"""
自动检测PIL Image对象是否包含EXIF信息,如果包含则根据EXIF信息重新修改图片的朝向。
:param pil_image: 输入的PIL Image对象
:return: 返回修正后的PIL Image对象
"""
try:
# 获取EXIF信息
exif = pil_image._getexif()
if exif is not None:
# 查找Orientation的EXIF标签编号
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
# 获取图片的朝向信息
orientation_value = exif.get(orientation)
print(f"Orientation value: {orientation_value}")
# 根据朝向信息调整图片方向
if orientation_value == 3:
pil_image = pil_image.rotate(180, expand=True)
elif orientation_value == 6:
pil_image = pil_image.rotate(270, expand=True)
elif orientation_value == 8:
pil_image = pil_image.rotate(90, expand=True)
except (AttributeError, KeyError, IndexError):
# 如果没有EXIF信息或者没有朝向信息,跳过处理
pass
return pil_image
def clone_repo():
# 从环境变量中获取 GitHub Token
github_token = os.getenv('GH_TOKEN')
if github_token is None:
logger.error("GitHub token is not set. Please set the GH_TOKEN secret in your Space settings.")
return False
# 使用 GitHub Token 进行身份验证并克隆仓库
clone_command = f'git clone https://{github_token}@github.com/mamba-ai/invoice_agent.git'
repo_dir = 'invoice_agent'
if os.path.exists(repo_dir):
logger.warning("Repository already exists.")
# 将仓库路径添加到 Python 模块搜索路径中
# logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
# sys.path.append(os.path.abspath(repo_dir))
return True
else:
logger.info("Cloning repository...")
result = subprocess.run(clone_command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
logger.warning("Repository cloned successfully.")
repo_dir = 'invoice_agent'
# 将仓库路径添加到 Python 模块搜索路径中
sys.path.append(os.path.abspath(repo_dir))
logger.warning(f"Adding {os.path.abspath(repo_dir)} to sys.path")
return True
else:
logger.error(f"Failed to clone repository: {result.stderr}")
return False
if clone_repo():
# 克隆成功后导入模块
import invoice_agent.agent as ia
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
st.set_page_config(layout="wide")
st.title("""
受領した請求書を自動で電子化 (Demo)
""")
col1, _, col2 = st.columns([.45, 0.1, .45])
in_file = st.sidebar.file_uploader(
"PDFファイルまたは画像:",
type=["pdf", "png", "jpg", "jpeg", "gif", "webp"],
)
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"ページ番号 {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = Image.open(in_file).convert("RGB")
pil_image = correct_image_orientation(pil_image)
pil_image = resize_image_if_needed(pil_image)
text_rec = st.sidebar.button("認識開始")
if pil_image is None:
st.stop()
with col1:
st.write("## アップロードされたファイル")
st.image(pil_image, caption="アップロードされたファイル", use_column_width=True)
# if 'json_predictions' in st.session_state:
# prev_json_predictions = st.session_state.json_predictions
# prev_excel_file_path = st.session_state.excel_file_path
# with col2:
# st.write("## 結果")
# # 提供下载链接
# with open(prev_excel_file_path, "rb") as file:
# st.download_button(
# label="Download Excel",
# data=file,
# file_name="output.xlsx",
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
# )
# st.write("解析後の内容:")
# st.json(prev_json_predictions)
if text_rec:
with col2:
st.write("## 結果")
# Placeholder for status indicator
status_placeholder = st.empty()
with st.spinner('現在ファイルを解析中です'):
# Simulate model running time
json_predictions = ia.get_json_result_v2(pil_image, None)
logger.error(json_predictions)
st.session_state.json_predictions = json_predictions
# Convert JSON to Excel
# excel_file_path = "output.xlsx"
# st.session_state.excel_file_path = excel_file_path
# ia.json_to_excel_with_links(json_predictions, excel_file_path)
# After model finishes
status_placeholder.success('ファイルの解析が完了しました!')
# 提供下载链接
# with open(excel_file_path, "rb") as file:
# st.download_button(
# label="Download Excel",
# data=file,
# file_name="output.xlsx",
# mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
# )
# Display the result
st.write("解析後の内容:")
st.json(json_predictions)
# st.write(predictions)
|