import spaces import gradio as gr import torch from PIL import Image import numpy as np from clip_interrogator import Config, Interrogator import logging import os import warnings from datetime import datetime import gc import re warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) os.environ["TOKENIZERS_PARALLELISM"] = "false" logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def get_device(): if torch.cuda.is_available(): return "cuda" elif torch.backends.mps.is_available(): return "mps" else: return "cpu" DEVICE = get_device() class DeepFluxAnalyzer: """ Deep analysis engine that understands image content and applies Flux rules intelligently """ def __init__(self): self.forbidden_elements = ["++", "weights", "white background [en dev]"] # Deep vocabulary for intelligent analysis self.age_descriptors = { "young": ["young", "youthful", "fresh-faced"], "middle": ["middle-aged", "mature"], "elderly": ["elderly", "aged", "distinguished", "weathered"] } self.facial_features = { "beard": ["bearded", "with a full beard", "with facial hair", "with a silver beard", "with a gray beard"], "glasses": ["wearing glasses", "with wire-frame glasses", "with spectacles", "with eyeglasses"], "eyes": ["intense gaze", "piercing eyes", "contemplative expression", "focused stare"] } self.clothing_religious = { "hat": ["black hat", "traditional hat", "religious headwear", "Orthodox hat"], "clothing": ["traditional clothing", "religious attire", "formal wear", "dark clothing"] } self.settings_detailed = { "indoor": ["indoor setting", "interior space", "indoor environment"], "outdoor": ["outdoor setting", "natural environment", "exterior location"], "studio": ["studio setting", "controlled environment", "professional backdrop"] } self.lighting_advanced = { "portrait": ["dramatic portrait lighting", "studio portrait lighting", "professional portrait setup"], "natural": ["natural lighting", "window light", "ambient illumination"], "dramatic": ["dramatic lighting", "high contrast lighting", "chiaroscuro lighting"] } self.technical_professional = { "portrait_lens": ["85mm lens", "135mm lens", "medium telephoto"], "standard_lens": ["50mm lens", "35mm lens", "standard focal length"], "aperture": ["f/1.4 aperture", "f/2.8 aperture", "f/4 aperture"], "camera": ["Shot on Phase One XF", "Shot on Hasselblad", "Shot on Canon EOS R5"] } def analyze_clip_deeply(self, clip_result): """Extract detailed information from CLIP analysis""" clip_lower = clip_result.lower() analysis = { "subjects": [], "age": None, "features": [], "clothing": [], "setting": None, "mood": None, "composition": None } # Subject and age detection if any(word in clip_lower for word in ["man", "person", "male"]): if any(word in clip_lower for word in ["old", "elderly", "aged", "gray", "grey", "silver"]): analysis["subjects"].append("elderly man") analysis["age"] = "elderly" elif any(word in clip_lower for word in ["young", "youth", "boy"]): analysis["subjects"].append("young man") analysis["age"] = "young" else: analysis["subjects"].append("man") analysis["age"] = "middle" if any(word in clip_lower for word in ["woman", "female", "lady"]): if any(word in clip_lower for word in ["old", "elderly", "aged"]): analysis["subjects"].append("elderly woman") analysis["age"] = "elderly" else: analysis["subjects"].append("woman") # Facial features detection if any(word in clip_lower for word in ["beard", "facial hair", "mustache"]): if any(word in clip_lower for word in ["gray", "grey", "silver", "white"]): analysis["features"].append("silver beard") else: analysis["features"].append("beard") if any(word in clip_lower for word in ["glasses", "spectacles", "eyeglasses"]): analysis["features"].append("glasses") # Clothing and accessories if any(word in clip_lower for word in ["hat", "cap", "headwear"]): analysis["clothing"].append("hat") if any(word in clip_lower for word in ["suit", "formal", "dress", "shirt"]): analysis["clothing"].append("formal wear") # Setting detection if any(word in clip_lower for word in ["indoor", "inside", "interior", "room"]): analysis["setting"] = "indoor" elif any(word in clip_lower for word in ["outdoor", "outside", "landscape", "street"]): analysis["setting"] = "outdoor" elif any(word in clip_lower for word in ["studio", "backdrop"]): analysis["setting"] = "studio" # Mood and composition if any(word in clip_lower for word in ["portrait", "headshot", "face", "close-up"]): analysis["composition"] = "portrait" elif any(word in clip_lower for word in ["sitting", "seated", "chair"]): analysis["composition"] = "seated" elif any(word in clip_lower for word in ["standing", "upright"]): analysis["composition"] = "standing" return analysis def build_flux_prompt(self, analysis, clip_base): """Build optimized Flux prompt using deep analysis""" components = [] # 1. Article (intelligent selection) if analysis["subjects"]: subject = analysis["subjects"][0] article = "An" if subject[0] in 'aeiou' else "A" else: article = "A" components.append(article) # 2. Descriptive adjectives (context-aware) adjectives = [] if analysis["age"] == "elderly": adjectives.extend(["distinguished", "weathered"]) elif analysis["age"] == "young": adjectives.extend(["young", "fresh-faced"]) else: adjectives.extend(["professional", "elegant"]) # Add up to 2-3 adjectives as per Flux rules components.extend(adjectives[:2]) # 3. Main subject (enhanced with details) if analysis["subjects"]: main_subject = analysis["subjects"][0] # Add religious/cultural context if detected if "hat" in analysis["clothing"] and "beard" in [f.split()[0] for f in analysis["features"]]: main_subject = "Orthodox Jewish " + main_subject else: main_subject = "subject" components.append(main_subject) # 4. Features integration (intelligent placement) feature_descriptions = [] if "glasses" in analysis["features"]: feature_descriptions.append("with distinctive wire-frame glasses") if any("beard" in f for f in analysis["features"]): if "silver beard" in analysis["features"]: feature_descriptions.append("with a distinguished silver beard") else: feature_descriptions.append("with a full beard") if feature_descriptions: components.extend(feature_descriptions) # 5. Clothing and accessories clothing_desc = [] if "hat" in analysis["clothing"]: clothing_desc.append("wearing a traditional black hat") if "formal wear" in analysis["clothing"]: clothing_desc.append("in formal attire") if clothing_desc: components.extend(clothing_desc) # 6. Verb/Action (based on composition analysis) if analysis["composition"] == "seated": action = "seated contemplatively" elif analysis["composition"] == "standing": action = "standing with dignity" else: action = "positioned thoughtfully" components.append(action) # 7. Context/Location (enhanced setting) setting_map = { "indoor": "in an intimate indoor setting", "outdoor": "in a natural outdoor environment", "studio": "in a professional studio environment" } if analysis["setting"]: context = setting_map.get(analysis["setting"], "in a carefully composed environment") else: context = "in a thoughtfully arranged scene" components.append(context) # 8. Environmental details (lighting-aware) if analysis["composition"] == "portrait": env_detail = "with dramatic portrait lighting that emphasizes facial features and texture" else: env_detail = "captured with sophisticated atmospheric lighting" components.append(env_detail) # 9. Technical specifications (composition-appropriate) if analysis["composition"] == "portrait": tech_spec = "Shot on Phase One XF, 85mm lens, f/2.8 aperture" else: tech_spec = "Shot on Phase One, 50mm lens, f/4 aperture" components.append(tech_spec) # 10. Quality marker (always professional) components.append("professional photography") # Join with proper punctuation prompt = ", ".join(components) # Clean up and optimize prompt = re.sub(r'\s+', ' ', prompt) # Remove extra spaces prompt = prompt.replace(", ,", ",") # Remove double commas return prompt def calculate_intelligence_score(self, prompt, analysis): """Calculate how well the prompt reflects intelligent analysis""" score = 0 # Structure compliance (Flux rules 1-10) if prompt.startswith(("A", "An")): score += 10 # Feature recognition accuracy if len(analysis["features"]) > 0: score += 15 # Context understanding if analysis["setting"]: score += 15 # Subject detail depth if len(analysis["subjects"]) > 0: score += 15 # Technical specs presence if "Phase One" in prompt and "lens" in prompt: score += 15 # Lighting specification if "lighting" in prompt: score += 10 # Composition awareness if analysis["composition"]: score += 10 # Forbidden elements check if not any(forbidden in prompt for forbidden in self.forbidden_elements): score += 10 return min(score, 100) class FluxPromptOptimizer: def __init__(self): self.interrogator = None self.analyzer = DeepFluxAnalyzer() self.usage_count = 0 self.device = DEVICE self.is_initialized = False def initialize_model(self): if self.is_initialized: return True try: config = Config( clip_model_name="ViT-L-14/openai", download_cache=True, chunk_size=2048, quiet=True, device=self.device ) self.interrogator = Interrogator(config) self.is_initialized = True if self.device == "cpu": gc.collect() else: torch.cuda.empty_cache() return True except Exception as e: logger.error(f"Initialization error: {e}") return False def optimize_image(self, image): if image is None: return None if isinstance(image, np.ndarray): image = Image.fromarray(image) elif not isinstance(image, Image.Image): image = Image.open(image) if image.mode != 'RGB': image = image.convert('RGB') max_size = 768 if self.device != "cpu" else 512 if image.size[0] > max_size or image.size[1] > max_size: image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) return image @spaces.GPU def generate_optimized_prompt(self, image): try: if not self.is_initialized: if not self.initialize_model(): return "❌ Model initialization failed.", "Please refresh and try again.", 0 if image is None: return "❌ Please upload an image.", "No image provided.", 0 self.usage_count += 1 image = self.optimize_image(image) if image is None: return "❌ Image processing failed.", "Invalid image format.", 0 start_time = datetime.now() # Get comprehensive CLIP analysis clip_result = self.interrogator.interrogate(image) # Deep analysis of the CLIP result deep_analysis = self.analyzer.analyze_clip_deeply(clip_result) # Build optimized Flux prompt optimized_prompt = self.analyzer.build_flux_prompt(deep_analysis, clip_result) # Calculate intelligence score score = self.analyzer.calculate_intelligence_score(optimized_prompt, deep_analysis) end_time = datetime.now() duration = (end_time - start_time).total_seconds() # Memory cleanup if self.device == "cpu": gc.collect() else: torch.cuda.empty_cache() # Generate detailed analysis info gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU" features_detected = ", ".join(deep_analysis["features"]) if deep_analysis["features"] else "None" subjects_detected = ", ".join(deep_analysis["subjects"]) if deep_analysis["subjects"] else "Generic" analysis_info = f"""**Deep Analysis Complete** **Processing:** {gpu_status} • {duration:.1f}s **Intelligence Score:** {score}/100 **Generation:** #{self.usage_count} **Detected Elements:** • **Subjects:** {subjects_detected} • **Features:** {features_detected} • **Setting:** {deep_analysis["setting"] or "Unspecified"} • **Composition:** {deep_analysis["composition"] or "Standard"} **CLIP Base:** {clip_result[:80]}... **Flux Enhancement:** Applied deep analysis with Pariente AI rules""" return optimized_prompt, analysis_info, score except Exception as e: logger.error(f"Generation error: {e}") return f"❌ Error: {str(e)}", "Please try with a different image.", 0 optimizer = FluxPromptOptimizer() def process_image_wrapper(image): """Simplified wrapper - no unnecessary options""" try: prompt, info, score = optimizer.generate_optimized_prompt(image) # Create score HTML color = "#22c55e" if score >= 80 else "#f59e0b" if score >= 60 else "#ef4444" score_html = f'''
{score}
Intelligence Score
''' return prompt, info, score_html except Exception as e: logger.error(f"Wrapper error: {e}") return "❌ Processing failed", f"Error: {str(e)}", '
Error
' def clear_outputs(): gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() return "", "", '
--
Intelligence Score
' def create_interface(): css = """ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); .gradio-container { max-width: 1200px !important; margin: 0 auto !important; font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important; } .main-header { text-align: center; padding: 2rem 0 3rem 0; background: linear-gradient(135deg, #1e293b 0%, #334155 100%); color: white; margin: -2rem -2rem 2rem -2rem; border-radius: 0 0 24px 24px; } .main-title { font-size: 2.5rem !important; font-weight: 700 !important; margin: 0 0 0.5rem 0 !important; letter-spacing: -0.025em !important; background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; } .subtitle { font-size: 1.125rem !important; font-weight: 400 !important; opacity: 0.8 !important; margin: 0 !important; } .prompt-output { font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important; font-size: 14px !important; line-height: 1.6 !important; background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important; border: 1px solid #e2e8f0 !important; border-radius: 12px !important; padding: 1.5rem !important; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1) !important; } """ with gr.Blocks( theme=gr.themes.Soft(), title="Flux Prompt Optimizer", css=css ) as interface: gr.HTML("""
⚡ Flux Prompt Optimizer
Deep AI analysis • Intelligent prompt generation • Research-based optimization
""") with gr.Row(): with gr.Column(scale=1): gr.Markdown("## 📷 Image Analysis") image_input = gr.Image( label="Upload your image", type="pil", height=400 ) optimize_btn = gr.Button( "🧠 Analyze & Optimize", variant="primary", size="lg" ) gr.Markdown(""" ### Deep Analysis Engine This system performs comprehensive image analysis: • **Subject Recognition** - Identifies people, objects, context • **Feature Detection** - Facial features, clothing, accessories • **Composition Analysis** - Lighting, setting, mood • **Flux Optimization** - Applies research-validated rules No options needed - the AI decides what's optimal. """) with gr.Column(scale=1): gr.Markdown("## 🎯 Optimized Result") prompt_output = gr.Textbox( label="Flux-Optimized Prompt", placeholder="Upload an image to see the intelligent analysis and optimization...", lines=8, max_lines=12, elem_classes=["prompt-output"], show_copy_button=True ) score_output = gr.HTML( value='
--
Intelligence Score
' ) info_output = gr.Markdown(value="") clear_btn = gr.Button("🗑️ Clear", size="sm") gr.Markdown(""" --- ### 🔬 Pariente AI Research Foundation This optimizer implements deep computer vision analysis combined with validated Flux prompt engineering rules. The system intelligently recognizes image content and applies structured optimization without requiring user configuration. **Research-based • Intelligence-driven • Zero configuration needed** """) # Simple event handlers optimize_btn.click( fn=process_image_wrapper, inputs=[image_input], outputs=[prompt_output, info_output, score_output] ) clear_btn.click( fn=clear_outputs, outputs=[prompt_output, info_output, score_output] ) return interface if __name__ == "__main__": logger.info("🚀 Starting Deep Flux Prompt Optimizer") interface = create_interface() interface.launch( server_name="0.0.0.0", server_port=7860, show_error=True )