""" Ultra Supreme Analyzer - VERSIÓN SIMPLIFICADA Solo formatea, no limita """ import re from typing import Dict, List, Any, Tuple class UltraSupremeAnalyzer: """Analyzer simplificado que NO limita CLIP""" def __init__(self): pass def ultra_supreme_analysis(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]: """Análisis mínimo - solo devuelve los datos raw""" return { "clip_fast": clip_fast, "clip_classic": clip_classic, "clip_best": clip_best, "full_description": f"{clip_fast} {clip_classic} {clip_best}", "demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []}, "facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []}, "emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []}, "clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []}, "environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []}, "pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []}, "technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}}, "intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0} } def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str: """NO construye nada - este método ya no se usa con el nuevo pipeline""" # Este método existe solo por compatibilidad # El verdadero trabajo se hace en optimizer.py con apply_flux_rules() return clip_results[0] if clip_results else "" def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]: """Calcula score basado en la longitud y riqueza del prompt""" score = 0 breakdown = {} # Simple scoring basado en características del prompt final if len(prompt) > 50: score += 25 breakdown["length"] = 25 if "Shot on" in prompt: score += 25 breakdown["camera"] = 25 if "lighting" in prompt.lower(): score += 25 breakdown["lighting"] = 25 if any(word in prompt.lower() for word in ["photography", "cinematic", "professional"]): score += 25 breakdown["style"] = 25 return min(score, 100), breakdown