Spaces:
Running
on
Zero
Running
on
Zero
Update analyzer.py
Browse files- analyzer.py +569 -39
analyzer.py
CHANGED
@@ -1,60 +1,590 @@
|
|
1 |
"""
|
2 |
-
Ultra Supreme Analyzer -
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
import re
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
class UltraSupremeAnalyzer:
|
10 |
-
"""
|
11 |
|
12 |
def __init__(self):
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"clip_fast": clip_fast,
|
19 |
-
"clip_classic": clip_classic,
|
20 |
"clip_best": clip_best,
|
21 |
"full_description": f"{clip_fast} {clip_classic} {clip_best}",
|
22 |
-
"demographic": {
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str:
|
33 |
-
"""
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]:
|
39 |
-
"""
|
40 |
-
score = 0
|
41 |
breakdown = {}
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
score += 25
|
46 |
-
breakdown["length"] = 25
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
-
return
|
|
|
1 |
"""
|
2 |
+
Ultra Supreme Analyzer - Complete Multi-Model Analysis
|
3 |
+
Integrates multiple specialized models for comprehensive image analysis
|
4 |
"""
|
5 |
|
6 |
import re
|
7 |
+
import logging
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
from typing import Dict, List, Any, Tuple, Optional
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
# Deep learning models for specialized analysis
|
16 |
+
try:
|
17 |
+
from deepface import DeepFace
|
18 |
+
DEEPFACE_AVAILABLE = True
|
19 |
+
except:
|
20 |
+
DEEPFACE_AVAILABLE = False
|
21 |
+
|
22 |
+
try:
|
23 |
+
import mediapipe as mp
|
24 |
+
MEDIAPIPE_AVAILABLE = True
|
25 |
+
except:
|
26 |
+
MEDIAPIPE_AVAILABLE = False
|
27 |
+
|
28 |
+
try:
|
29 |
+
from transformers import pipeline
|
30 |
+
TRANSFORMERS_AVAILABLE = True
|
31 |
+
except:
|
32 |
+
TRANSFORMERS_AVAILABLE = False
|
33 |
+
|
34 |
+
from constants import (
|
35 |
+
FORBIDDEN_ELEMENTS, MICRO_AGE_INDICATORS, ULTRA_FACIAL_ANALYSIS,
|
36 |
+
EMOTION_MICRO_EXPRESSIONS, CULTURAL_RELIGIOUS_ULTRA, CLOTHING_ACCESSORIES_ULTRA,
|
37 |
+
ENVIRONMENTAL_ULTRA_ANALYSIS, POSE_BODY_LANGUAGE_ULTRA, COMPOSITION_PHOTOGRAPHY_ULTRA,
|
38 |
+
TECHNICAL_PHOTOGRAPHY_ULTRA, QUALITY_DESCRIPTORS_ULTRA, GENDER_INDICATORS
|
39 |
+
)
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
|
44 |
class UltraSupremeAnalyzer:
|
45 |
+
"""Complete analyzer with multiple specialized models"""
|
46 |
|
47 |
def __init__(self):
|
48 |
+
self.face_cascade = None
|
49 |
+
self.pose_detector = None
|
50 |
+
self.emotion_classifier = None
|
51 |
+
self.scene_classifier = None
|
52 |
+
self.models_initialized = False
|
53 |
+
|
54 |
+
def _initialize_models(self):
|
55 |
+
"""Lazy initialization of models"""
|
56 |
+
if self.models_initialized:
|
57 |
+
return
|
58 |
+
|
59 |
+
try:
|
60 |
+
# OpenCV face detector (lightweight)
|
61 |
+
self.face_cascade = cv2.CascadeClassifier(
|
62 |
+
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
63 |
+
)
|
64 |
+
|
65 |
+
# MediaPipe pose detector
|
66 |
+
if MEDIAPIPE_AVAILABLE:
|
67 |
+
self.mp_pose = mp.solutions.pose
|
68 |
+
self.pose_detector = self.mp_pose.Pose(
|
69 |
+
static_image_mode=True,
|
70 |
+
min_detection_confidence=0.5
|
71 |
+
)
|
72 |
+
|
73 |
+
# Emotion classifier from transformers
|
74 |
+
if TRANSFORMERS_AVAILABLE:
|
75 |
+
self.emotion_classifier = pipeline(
|
76 |
+
"image-classification",
|
77 |
+
model="dima806/facial_emotions_image_detection"
|
78 |
+
)
|
79 |
+
|
80 |
+
self.models_initialized = True
|
81 |
+
logger.info("Additional analysis models initialized")
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
logger.error(f"Error initializing models: {e}")
|
85 |
+
self.models_initialized = False
|
86 |
|
87 |
+
@spaces.GPU(duration=30)
|
88 |
+
def ultra_supreme_analysis(self, image: Any, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
|
89 |
+
"""Complete analysis using all available models"""
|
90 |
+
|
91 |
+
# Initialize models if needed
|
92 |
+
self._initialize_models()
|
93 |
+
|
94 |
+
# Start with CLIP analysis
|
95 |
+
clip_analysis = self._parse_clip_results(clip_fast, clip_classic, clip_best)
|
96 |
+
|
97 |
+
# Convert image for processing
|
98 |
+
if isinstance(image, Image.Image):
|
99 |
+
img_array = np.array(image)
|
100 |
+
img_rgb = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
|
101 |
+
else:
|
102 |
+
img_rgb = image
|
103 |
+
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
104 |
+
|
105 |
+
# Initialize complete analysis structure
|
106 |
+
analysis = {
|
107 |
"clip_fast": clip_fast,
|
108 |
+
"clip_classic": clip_classic,
|
109 |
"clip_best": clip_best,
|
110 |
"full_description": f"{clip_fast} {clip_classic} {clip_best}",
|
111 |
+
"demographic": {
|
112 |
+
"age_category": None,
|
113 |
+
"age_confidence": 0,
|
114 |
+
"gender": None,
|
115 |
+
"gender_confidence": 0,
|
116 |
+
"cultural_religious": []
|
117 |
+
},
|
118 |
+
"facial_ultra": {
|
119 |
+
"eyes": [],
|
120 |
+
"eyebrows": [],
|
121 |
+
"nose": [],
|
122 |
+
"mouth": [],
|
123 |
+
"facial_hair": [],
|
124 |
+
"skin": [],
|
125 |
+
"structure": [],
|
126 |
+
"face_count": 0,
|
127 |
+
"face_locations": []
|
128 |
+
},
|
129 |
+
"emotional_state": {
|
130 |
+
"primary_emotion": None,
|
131 |
+
"emotion_confidence": 0,
|
132 |
+
"emotion_distribution": {},
|
133 |
+
"micro_expressions": [],
|
134 |
+
"overall_demeanor": []
|
135 |
+
},
|
136 |
+
"clothing_accessories": {
|
137 |
+
"headwear": [],
|
138 |
+
"eyewear": [],
|
139 |
+
"clothing": [],
|
140 |
+
"accessories": [],
|
141 |
+
"style": []
|
142 |
+
},
|
143 |
+
"environmental": {
|
144 |
+
"setting_type": None,
|
145 |
+
"specific_location": None,
|
146 |
+
"lighting_analysis": [],
|
147 |
+
"atmosphere": [],
|
148 |
+
"objects": []
|
149 |
+
},
|
150 |
+
"pose_composition": {
|
151 |
+
"body_language": [],
|
152 |
+
"head_position": [],
|
153 |
+
"eye_contact": [],
|
154 |
+
"posture": [],
|
155 |
+
"gesture": [],
|
156 |
+
"pose_confidence": 0
|
157 |
+
},
|
158 |
+
"technical_analysis": {
|
159 |
+
"shot_type": None,
|
160 |
+
"angle": None,
|
161 |
+
"lighting_setup": None,
|
162 |
+
"composition": [],
|
163 |
+
"suggested_equipment": {}
|
164 |
+
},
|
165 |
+
"intelligence_metrics": {
|
166 |
+
"total_features_detected": 0,
|
167 |
+
"analysis_depth_score": 0,
|
168 |
+
"cultural_awareness_score": 0,
|
169 |
+
"technical_optimization_score": 0,
|
170 |
+
"model_confidence_average": 0
|
171 |
+
}
|
172 |
+
}
|
173 |
+
|
174 |
+
# Merge CLIP analysis
|
175 |
+
analysis = self._merge_analysis(analysis, clip_analysis)
|
176 |
+
|
177 |
+
# Face detection and analysis
|
178 |
+
face_analysis = self._analyze_faces(img_rgb, image)
|
179 |
+
analysis = self._merge_analysis(analysis, face_analysis)
|
180 |
+
|
181 |
+
# Pose analysis
|
182 |
+
if MEDIAPIPE_AVAILABLE:
|
183 |
+
pose_analysis = self._analyze_pose(image)
|
184 |
+
analysis = self._merge_analysis(analysis, pose_analysis)
|
185 |
+
|
186 |
+
# Emotion analysis
|
187 |
+
if TRANSFORMERS_AVAILABLE and analysis["facial_ultra"]["face_count"] > 0:
|
188 |
+
emotion_analysis = self._analyze_emotions(image)
|
189 |
+
analysis = self._merge_analysis(analysis, emotion_analysis)
|
190 |
+
|
191 |
+
# Scene and environment analysis
|
192 |
+
scene_analysis = self._analyze_scene(clip_analysis)
|
193 |
+
analysis = self._merge_analysis(analysis, scene_analysis)
|
194 |
+
|
195 |
+
# Calculate intelligence metrics
|
196 |
+
analysis = self._calculate_intelligence_metrics(analysis)
|
197 |
+
|
198 |
+
return analysis
|
199 |
+
|
200 |
+
def _parse_clip_results(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
|
201 |
+
"""Parse CLIP results for structured information"""
|
202 |
+
combined_text = f"{clip_fast} {clip_classic} {clip_best}".lower()
|
203 |
+
|
204 |
+
analysis = {
|
205 |
+
"demographic": {},
|
206 |
+
"facial_ultra": {},
|
207 |
+
"emotional_state": {},
|
208 |
+
"clothing_accessories": {},
|
209 |
+
"environmental": {},
|
210 |
+
"pose_composition": {},
|
211 |
+
"technical_analysis": {}
|
212 |
}
|
213 |
+
|
214 |
+
# Gender detection
|
215 |
+
for gender, indicators in GENDER_INDICATORS.items():
|
216 |
+
if any(indicator in combined_text for indicator in indicators):
|
217 |
+
analysis["demographic"]["gender"] = gender
|
218 |
+
analysis["demographic"]["gender_confidence"] = 0.8
|
219 |
+
break
|
220 |
+
|
221 |
+
# Age detection
|
222 |
+
for age_category, indicators in MICRO_AGE_INDICATORS.items():
|
223 |
+
if any(indicator in combined_text for indicator in indicators):
|
224 |
+
analysis["demographic"]["age_category"] = age_category
|
225 |
+
analysis["demographic"]["age_confidence"] = 0.7
|
226 |
+
break
|
227 |
+
|
228 |
+
# Facial features
|
229 |
+
for feature_type, features in ULTRA_FACIAL_ANALYSIS.items():
|
230 |
+
if isinstance(features, dict):
|
231 |
+
for sub_type, sub_features in features.items():
|
232 |
+
found = [f for f in sub_features if f in combined_text]
|
233 |
+
if found and feature_type in analysis["facial_ultra"]:
|
234 |
+
analysis["facial_ultra"][feature_type] = found
|
235 |
+
else:
|
236 |
+
found = [f for f in features if f in combined_text]
|
237 |
+
if found:
|
238 |
+
analysis["facial_ultra"][feature_type] = found
|
239 |
+
|
240 |
+
# Emotions
|
241 |
+
all_emotions = EMOTION_MICRO_EXPRESSIONS["primary_emotions"] + EMOTION_MICRO_EXPRESSIONS["complex_emotions"]
|
242 |
+
found_emotions = [e for e in all_emotions if e in combined_text]
|
243 |
+
if found_emotions:
|
244 |
+
analysis["emotional_state"]["primary_emotion"] = found_emotions[0]
|
245 |
+
analysis["emotional_state"]["micro_expressions"] = found_emotions
|
246 |
+
|
247 |
+
# Environment
|
248 |
+
for setting_type, settings in ENVIRONMENTAL_ULTRA_ANALYSIS["indoor_settings"].items():
|
249 |
+
if any(s in combined_text for s in settings):
|
250 |
+
analysis["environmental"]["setting_type"] = f"indoor_{setting_type}"
|
251 |
+
break
|
252 |
+
|
253 |
+
for setting_type, settings in ENVIRONMENTAL_ULTRA_ANALYSIS["outdoor_settings"].items():
|
254 |
+
if any(s in combined_text for s in settings):
|
255 |
+
analysis["environmental"]["setting_type"] = f"outdoor_{setting_type}"
|
256 |
+
break
|
257 |
+
|
258 |
+
# Technical analysis
|
259 |
+
for shot_type in COMPOSITION_PHOTOGRAPHY_ULTRA["shot_types"]:
|
260 |
+
if shot_type in combined_text:
|
261 |
+
analysis["technical_analysis"]["shot_type"] = shot_type
|
262 |
+
break
|
263 |
+
|
264 |
+
return analysis
|
265 |
+
|
266 |
+
def _analyze_faces(self, img_bgr: np.ndarray, img_pil: Image.Image) -> Dict[str, Any]:
|
267 |
+
"""Analyze faces using OpenCV and DeepFace"""
|
268 |
+
analysis = {"facial_ultra": {}, "demographic": {}, "emotional_state": {}}
|
269 |
+
|
270 |
+
# OpenCV face detection
|
271 |
+
gray = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)
|
272 |
+
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
|
273 |
+
|
274 |
+
analysis["facial_ultra"]["face_count"] = len(faces)
|
275 |
+
analysis["facial_ultra"]["face_locations"] = faces.tolist() if len(faces) > 0 else []
|
276 |
+
|
277 |
+
# DeepFace analysis for the first detected face
|
278 |
+
if DEEPFACE_AVAILABLE and len(faces) > 0:
|
279 |
+
try:
|
280 |
+
# Analyze with DeepFace
|
281 |
+
results = DeepFace.analyze(
|
282 |
+
img_path=np.array(img_pil),
|
283 |
+
actions=['age', 'gender', 'emotion', 'race'],
|
284 |
+
enforce_detection=False,
|
285 |
+
silent=True
|
286 |
+
)
|
287 |
+
|
288 |
+
if isinstance(results, list):
|
289 |
+
results = results[0]
|
290 |
+
|
291 |
+
# Extract demographics
|
292 |
+
analysis["demographic"]["age_category"] = self._age_to_category(results.get('age', 0))
|
293 |
+
analysis["demographic"]["age_confidence"] = 0.85
|
294 |
+
analysis["demographic"]["gender"] = results.get('dominant_gender', '').lower()
|
295 |
+
analysis["demographic"]["gender_confidence"] = results.get('gender', {}).get(
|
296 |
+
results.get('dominant_gender', ''), 0
|
297 |
+
) / 100.0
|
298 |
+
|
299 |
+
# Extract emotions
|
300 |
+
emotions = results.get('emotion', {})
|
301 |
+
if emotions:
|
302 |
+
sorted_emotions = sorted(emotions.items(), key=lambda x: x[1], reverse=True)
|
303 |
+
analysis["emotional_state"]["primary_emotion"] = sorted_emotions[0][0]
|
304 |
+
analysis["emotional_state"]["emotion_confidence"] = sorted_emotions[0][1] / 100.0
|
305 |
+
analysis["emotional_state"]["emotion_distribution"] = {
|
306 |
+
k: v/100.0 for k, v in emotions.items()
|
307 |
+
}
|
308 |
+
|
309 |
+
except Exception as e:
|
310 |
+
logger.warning(f"DeepFace analysis failed: {e}")
|
311 |
+
|
312 |
+
return analysis
|
313 |
+
|
314 |
+
def _analyze_pose(self, image: Image.Image) -> Dict[str, Any]:
|
315 |
+
"""Analyze body pose using MediaPipe"""
|
316 |
+
analysis = {"pose_composition": {}}
|
317 |
+
|
318 |
+
if not MEDIAPIPE_AVAILABLE or not self.pose_detector:
|
319 |
+
return analysis
|
320 |
+
|
321 |
+
try:
|
322 |
+
# Convert PIL to RGB array
|
323 |
+
image_rgb = np.array(image)
|
324 |
+
|
325 |
+
# Process the image
|
326 |
+
results = self.pose_detector.process(image_rgb)
|
327 |
+
|
328 |
+
if results.pose_landmarks:
|
329 |
+
landmarks = results.pose_landmarks.landmark
|
330 |
+
|
331 |
+
# Analyze head position
|
332 |
+
nose = landmarks[self.mp_pose.PoseLandmark.NOSE]
|
333 |
+
left_eye = landmarks[self.mp_pose.PoseLandmark.LEFT_EYE]
|
334 |
+
right_eye = landmarks[self.mp_pose.PoseLandmark.RIGHT_EYE]
|
335 |
+
|
336 |
+
# Calculate head tilt
|
337 |
+
eye_diff_y = abs(left_eye.y - right_eye.y)
|
338 |
+
if eye_diff_y > 0.02:
|
339 |
+
analysis["pose_composition"]["head_position"] = ["head tilted"]
|
340 |
+
else:
|
341 |
+
analysis["pose_composition"]["head_position"] = ["head straight"]
|
342 |
+
|
343 |
+
# Analyze posture
|
344 |
+
left_shoulder = landmarks[self.mp_pose.PoseLandmark.LEFT_SHOULDER]
|
345 |
+
right_shoulder = landmarks[self.mp_pose.PoseLandmark.RIGHT_SHOULDER]
|
346 |
+
shoulder_diff_y = abs(left_shoulder.y - right_shoulder.y)
|
347 |
+
|
348 |
+
if shoulder_diff_y < 0.02:
|
349 |
+
analysis["pose_composition"]["posture"] = ["upright posture", "balanced stance"]
|
350 |
+
else:
|
351 |
+
analysis["pose_composition"]["posture"] = ["asymmetric posture"]
|
352 |
+
|
353 |
+
# Confidence based on visibility
|
354 |
+
visibility_scores = [l.visibility for l in landmarks]
|
355 |
+
analysis["pose_composition"]["pose_confidence"] = np.mean(visibility_scores)
|
356 |
+
|
357 |
+
# Body language interpretation
|
358 |
+
if nose.y < 0.3:
|
359 |
+
analysis["pose_composition"]["body_language"].append("confident stance")
|
360 |
+
|
361 |
+
except Exception as e:
|
362 |
+
logger.warning(f"Pose analysis failed: {e}")
|
363 |
+
|
364 |
+
return analysis
|
365 |
+
|
366 |
+
def _analyze_emotions(self, image: Image.Image) -> Dict[str, Any]:
|
367 |
+
"""Analyze emotions using transformer model"""
|
368 |
+
analysis = {"emotional_state": {}}
|
369 |
+
|
370 |
+
if not TRANSFORMERS_AVAILABLE or not self.emotion_classifier:
|
371 |
+
return analysis
|
372 |
+
|
373 |
+
try:
|
374 |
+
# Run emotion classification
|
375 |
+
predictions = self.emotion_classifier(image)
|
376 |
+
|
377 |
+
if predictions:
|
378 |
+
# Sort by confidence
|
379 |
+
predictions.sort(key=lambda x: x['score'], reverse=True)
|
380 |
+
|
381 |
+
# Primary emotion
|
382 |
+
analysis["emotional_state"]["primary_emotion"] = predictions[0]['label'].lower()
|
383 |
+
analysis["emotional_state"]["emotion_confidence"] = predictions[0]['score']
|
384 |
+
|
385 |
+
# Emotion distribution
|
386 |
+
analysis["emotional_state"]["emotion_distribution"] = {
|
387 |
+
pred['label'].lower(): pred['score'] for pred in predictions[:5]
|
388 |
+
}
|
389 |
+
|
390 |
+
# Map to micro-expressions
|
391 |
+
primary = predictions[0]['label'].lower()
|
392 |
+
if primary in ['happy', 'joy']:
|
393 |
+
analysis["emotional_state"]["micro_expressions"] = ["smile", "positive expression"]
|
394 |
+
elif primary in ['sad', 'sorrow']:
|
395 |
+
analysis["emotional_state"]["micro_expressions"] = ["downturned mouth", "melancholic"]
|
396 |
+
elif primary in ['angry', 'disgust']:
|
397 |
+
analysis["emotional_state"]["micro_expressions"] = ["furrowed brow", "tense jaw"]
|
398 |
+
elif primary in ['surprise', 'fear']:
|
399 |
+
analysis["emotional_state"]["micro_expressions"] = ["raised eyebrows", "wide eyes"]
|
400 |
+
|
401 |
+
except Exception as e:
|
402 |
+
logger.warning(f"Emotion analysis failed: {e}")
|
403 |
+
|
404 |
+
return analysis
|
405 |
+
|
406 |
+
def _analyze_scene(self, clip_analysis: Dict[str, Any]) -> Dict[str, Any]:
|
407 |
+
"""Analyze scene and environment from CLIP results"""
|
408 |
+
analysis = {"environmental": clip_analysis.get("environmental", {})}
|
409 |
+
|
410 |
+
# Lighting analysis based on CLIP description
|
411 |
+
combined_text = clip_analysis.get("full_description", "").lower()
|
412 |
+
|
413 |
+
lighting_keywords = {
|
414 |
+
"natural light": ["sunlight", "daylight", "outdoor", "sunny"],
|
415 |
+
"artificial light": ["indoor", "lamp", "fluorescent", "led"],
|
416 |
+
"dramatic lighting": ["dramatic", "moody", "contrast", "shadow"],
|
417 |
+
"soft lighting": ["soft", "diffused", "gentle", "even"]
|
418 |
+
}
|
419 |
+
|
420 |
+
for light_type, keywords in lighting_keywords.items():
|
421 |
+
if any(keyword in combined_text for keyword in keywords):
|
422 |
+
analysis["environmental"]["lighting_analysis"].append(light_type)
|
423 |
+
|
424 |
+
# Atmosphere
|
425 |
+
if any(word in combined_text for word in ["professional", "formal", "business"]):
|
426 |
+
analysis["environmental"]["atmosphere"].append("professional")
|
427 |
+
if any(word in combined_text for word in ["casual", "relaxed", "informal"]):
|
428 |
+
analysis["environmental"]["atmosphere"].append("casual")
|
429 |
+
if any(word in combined_text for word in ["artistic", "creative", "abstract"]):
|
430 |
+
analysis["environmental"]["atmosphere"].append("artistic")
|
431 |
+
|
432 |
+
return analysis
|
433 |
+
|
434 |
+
def _age_to_category(self, age: int) -> str:
|
435 |
+
"""Convert numeric age to category"""
|
436 |
+
if age < 2:
|
437 |
+
return "infant"
|
438 |
+
elif age < 12:
|
439 |
+
return "child"
|
440 |
+
elif age < 20:
|
441 |
+
return "teen"
|
442 |
+
elif age < 35:
|
443 |
+
return "young_adult"
|
444 |
+
elif age < 50:
|
445 |
+
return "middle_aged"
|
446 |
+
elif age < 65:
|
447 |
+
return "senior"
|
448 |
+
else:
|
449 |
+
return "elderly"
|
450 |
+
|
451 |
+
def _merge_analysis(self, base: Dict[str, Any], new: Dict[str, Any]) -> Dict[str, Any]:
|
452 |
+
"""Merge analysis results"""
|
453 |
+
for key, value in new.items():
|
454 |
+
if key in base:
|
455 |
+
if isinstance(value, dict) and isinstance(base[key], dict):
|
456 |
+
base[key].update(value)
|
457 |
+
elif isinstance(value, list) and isinstance(base[key], list):
|
458 |
+
base[key].extend(value)
|
459 |
+
elif value is not None and (not isinstance(base[key], (int, float)) or base[key] == 0):
|
460 |
+
base[key] = value
|
461 |
+
return base
|
462 |
+
|
463 |
+
def _calculate_intelligence_metrics(self, analysis: Dict[str, Any]) -> Dict[str, Any]:
|
464 |
+
"""Calculate intelligence metrics based on analysis completeness"""
|
465 |
+
metrics = analysis["intelligence_metrics"]
|
466 |
+
|
467 |
+
# Count detected features
|
468 |
+
total_features = 0
|
469 |
+
confidence_scores = []
|
470 |
+
|
471 |
+
# Demographic features
|
472 |
+
if analysis["demographic"]["age_category"]:
|
473 |
+
total_features += 1
|
474 |
+
confidence_scores.append(analysis["demographic"]["age_confidence"])
|
475 |
+
if analysis["demographic"]["gender"]:
|
476 |
+
total_features += 1
|
477 |
+
confidence_scores.append(analysis["demographic"]["gender_confidence"])
|
478 |
+
|
479 |
+
# Facial features
|
480 |
+
for feature in ["eyes", "eyebrows", "nose", "mouth", "facial_hair", "skin", "structure"]:
|
481 |
+
if analysis["facial_ultra"].get(feature):
|
482 |
+
total_features += len(analysis["facial_ultra"][feature])
|
483 |
+
|
484 |
+
# Emotional features
|
485 |
+
if analysis["emotional_state"]["primary_emotion"]:
|
486 |
+
total_features += 1
|
487 |
+
confidence_scores.append(analysis["emotional_state"]["emotion_confidence"])
|
488 |
+
|
489 |
+
# Pose features
|
490 |
+
if analysis["pose_composition"].get("pose_confidence", 0) > 0:
|
491 |
+
total_features += 1
|
492 |
+
confidence_scores.append(analysis["pose_composition"]["pose_confidence"])
|
493 |
+
|
494 |
+
# Environmental features
|
495 |
+
if analysis["environmental"]["setting_type"]:
|
496 |
+
total_features += 1
|
497 |
+
total_features += len(analysis["environmental"].get("lighting_analysis", []))
|
498 |
+
|
499 |
+
# Technical features
|
500 |
+
if analysis["technical_analysis"]["shot_type"]:
|
501 |
+
total_features += 1
|
502 |
+
|
503 |
+
# Calculate scores
|
504 |
+
metrics["total_features_detected"] = total_features
|
505 |
+
metrics["analysis_depth_score"] = min(100, total_features * 5)
|
506 |
+
|
507 |
+
# Cultural awareness (if religious/cultural indicators found)
|
508 |
+
if analysis["demographic"].get("cultural_religious"):
|
509 |
+
metrics["cultural_awareness_score"] = 80
|
510 |
+
else:
|
511 |
+
metrics["cultural_awareness_score"] = 40
|
512 |
+
|
513 |
+
# Technical optimization score
|
514 |
+
tech_features = sum([
|
515 |
+
1 if analysis["technical_analysis"]["shot_type"] else 0,
|
516 |
+
len(analysis["environmental"].get("lighting_analysis", [])),
|
517 |
+
len(analysis["pose_composition"].get("posture", []))
|
518 |
+
])
|
519 |
+
metrics["technical_optimization_score"] = min(100, tech_features * 25)
|
520 |
+
|
521 |
+
# Average confidence
|
522 |
+
if confidence_scores:
|
523 |
+
metrics["model_confidence_average"] = sum(confidence_scores) / len(confidence_scores)
|
524 |
+
else:
|
525 |
+
metrics["model_confidence_average"] = 0.5
|
526 |
+
|
527 |
+
return analysis
|
528 |
|
529 |
def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str:
|
530 |
+
"""Build enhanced prompt based on comprehensive analysis"""
|
531 |
+
prompt_parts = []
|
532 |
+
|
533 |
+
# Start with the best CLIP result
|
534 |
+
if clip_results:
|
535 |
+
prompt_parts.append(clip_results[0])
|
536 |
+
|
537 |
+
# Add demographic details if confident
|
538 |
+
if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_confidence"] > 0.7:
|
539 |
+
age_descriptors = QUALITY_DESCRIPTORS_ULTRA["based_on_age"].get(
|
540 |
+
ultra_analysis["demographic"]["age_category"], []
|
541 |
+
)
|
542 |
+
if age_descriptors:
|
543 |
+
prompt_parts.append(age_descriptors[0])
|
544 |
+
|
545 |
+
# Add emotional context
|
546 |
+
if ultra_analysis["emotional_state"]["primary_emotion"]:
|
547 |
+
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
|
548 |
+
emotion_descriptors = QUALITY_DESCRIPTORS_ULTRA["based_on_emotion"].get(emotion, [])
|
549 |
+
if emotion_descriptors:
|
550 |
+
prompt_parts.append(f"{emotion_descriptors[0]} expression")
|
551 |
+
|
552 |
+
# Add technical details
|
553 |
+
if ultra_analysis["technical_analysis"]["shot_type"]:
|
554 |
+
prompt_parts.append(ultra_analysis["technical_analysis"]["shot_type"])
|
555 |
+
|
556 |
+
# Add lighting
|
557 |
+
lighting = ultra_analysis["environmental"].get("lighting_analysis", [])
|
558 |
+
if lighting:
|
559 |
+
prompt_parts.append(f"with {lighting[0]}")
|
560 |
+
|
561 |
+
# Combine parts
|
562 |
+
enhanced_prompt = ", ".join(prompt_parts)
|
563 |
+
|
564 |
+
# Clean up
|
565 |
+
enhanced_prompt = re.sub(r'\s+', ' ', enhanced_prompt)
|
566 |
+
enhanced_prompt = re.sub(r',\s*,+', ',', enhanced_prompt)
|
567 |
+
|
568 |
+
return enhanced_prompt
|
569 |
|
570 |
def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]:
|
571 |
+
"""Calculate comprehensive score based on multi-model analysis"""
|
|
|
572 |
breakdown = {}
|
573 |
|
574 |
+
# Base score from prompt quality
|
575 |
+
breakdown["prompt_quality"] = min(25, len(prompt) // 10)
|
|
|
|
|
576 |
|
577 |
+
# Analysis depth score
|
578 |
+
breakdown["analysis_depth"] = min(25, ultra_analysis["intelligence_metrics"]["analysis_depth_score"] // 4)
|
579 |
+
|
580 |
+
# Model confidence score
|
581 |
+
avg_confidence = ultra_analysis["intelligence_metrics"]["model_confidence_average"]
|
582 |
+
breakdown["model_confidence"] = int(avg_confidence * 25)
|
583 |
+
|
584 |
+
# Feature richness score
|
585 |
+
total_features = ultra_analysis["intelligence_metrics"]["total_features_detected"]
|
586 |
+
breakdown["feature_richness"] = min(25, total_features * 2)
|
587 |
+
|
588 |
+
total_score = sum(breakdown.values())
|
589 |
|
590 |
+
return total_score, breakdown
|