Spaces:
Running
on
Zero
Running
on
Zero
Update models.py
Browse files
models.py
CHANGED
@@ -7,6 +7,7 @@ import spaces
|
|
7 |
import logging
|
8 |
import tempfile
|
9 |
import os
|
|
|
10 |
from typing import Optional, Dict, Any, Tuple
|
11 |
from PIL import Image
|
12 |
from gradio_client import Client, handle_file
|
@@ -82,38 +83,121 @@ class BagelAPIAnalyzer(BaseImageAnalyzer):
|
|
82 |
return False
|
83 |
|
84 |
def _extract_camera_setup(self, description: str) -> Optional[str]:
|
85 |
-
"""Extract camera setup recommendation from BAGEL response"""
|
86 |
try:
|
87 |
-
# Look for CAMERA_SETUP section
|
88 |
if "CAMERA_SETUP:" in description:
|
89 |
parts = description.split("CAMERA_SETUP:")
|
90 |
if len(parts) > 1:
|
91 |
-
|
92 |
-
#
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
camera_patterns = [
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
103 |
]
|
104 |
|
|
|
105 |
for pattern in camera_patterns:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
return None
|
114 |
|
115 |
except Exception as e:
|
116 |
-
logger.warning(f"Failed to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return None
|
118 |
|
119 |
def _save_temp_image(self, image: Image.Image) -> str:
|
@@ -165,22 +249,24 @@ class BagelAPIAnalyzer(BaseImageAnalyzer):
|
|
165 |
}
|
166 |
|
167 |
try:
|
168 |
-
#
|
169 |
if prompt is None:
|
170 |
-
prompt = """
|
171 |
|
172 |
-
1. DESCRIPTION: Start directly with the subject (e.g., "A color photograph showing..." or "A black and white
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
2. CAMERA_SETUP: Based on the
|
175 |
-
- For street/documentary
|
176 |
-
- For
|
177 |
-
- For
|
178 |
-
- For sports
|
179 |
-
- For macro: suggest specialized macro lenses
|
180 |
-
- For cinematic/widescreen formats: suggest cinema cameras or full-frame with appropriate aspect ratios
|
181 |
-
Be specific about focal length, aperture, and shooting style based on what you actually see in the image dimensions and content.
|
182 |
|
183 |
-
|
184 |
|
185 |
# Save image to temporary file
|
186 |
temp_path = self._save_temp_image(image)
|
@@ -195,7 +281,7 @@ Analyze carefully and be accurate about colors, image type, and proportions."""
|
|
195 |
prompt=prompt,
|
196 |
show_thinking=False,
|
197 |
do_sample=False,
|
198 |
-
text_temperature=0.
|
199 |
max_new_tokens=512,
|
200 |
api_name=self.api_endpoint
|
201 |
)
|
@@ -206,17 +292,19 @@ Analyze carefully and be accurate about colors, image type, and proportions."""
|
|
206 |
else:
|
207 |
description = str(result)
|
208 |
|
209 |
-
#
|
210 |
if isinstance(description, str) and description.strip():
|
211 |
description = description.strip()
|
212 |
|
213 |
-
#
|
214 |
camera_setup = self._extract_camera_setup(description)
|
215 |
if camera_setup:
|
216 |
metadata["camera_setup"] = camera_setup
|
217 |
metadata["has_camera_suggestion"] = True
|
|
|
218 |
else:
|
219 |
metadata["has_camera_suggestion"] = False
|
|
|
220 |
else:
|
221 |
description = "Detailed image analysis completed successfully"
|
222 |
metadata["has_camera_suggestion"] = False
|
@@ -226,7 +314,7 @@ Analyze carefully and be accurate about colors, image type, and proportions."""
|
|
226 |
"response_length": len(description)
|
227 |
})
|
228 |
|
229 |
-
logger.info(f"BAGEL API analysis complete: {len(description)} characters")
|
230 |
return description, metadata
|
231 |
|
232 |
except Exception as e:
|
@@ -240,22 +328,22 @@ Analyze carefully and be accurate about colors, image type, and proportions."""
|
|
240 |
|
241 |
def analyze_for_flux_prompt(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
|
242 |
"""Analyze image specifically for FLUX prompt generation"""
|
243 |
-
flux_prompt = """
|
244 |
|
245 |
-
1. DESCRIPTION:
|
246 |
-
- Image type (photograph, illustration, artwork)
|
247 |
-
-
|
248 |
-
-
|
249 |
-
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
- Street/urban scenes: Canon EOS R6, Sony A7 IV, Leica Q2 with 24-70mm f/2.8 or 35mm f/1.4
|
254 |
-
- Portraits: Canon EOS R5, Sony A7R V, Hasselblad X2D with 85mm f/1.4 or 135mm f/2
|
255 |
-
- Landscapes: Phase One XT, Fujifilm GFX 100S with 16-35mm f/2.8 or 40mm f/4
|
256 |
-
- Documentary: Canon EOS-1D X, Sony A9 III with 24-105mm f/4 or 70-200mm f/2.8
|
257 |
-
- Action/Sports: Canon EOS R3, Sony A1 with 300mm f/2.8 or 400mm f/2.8
|
258 |
-
Match the equipment to what you actually observe in the scene type and shooting conditions."""
|
259 |
|
260 |
return self.analyze_image(image, flux_prompt)
|
261 |
|
|
|
7 |
import logging
|
8 |
import tempfile
|
9 |
import os
|
10 |
+
import re
|
11 |
from typing import Optional, Dict, Any, Tuple
|
12 |
from PIL import Image
|
13 |
from gradio_client import Client, handle_file
|
|
|
83 |
return False
|
84 |
|
85 |
def _extract_camera_setup(self, description: str) -> Optional[str]:
|
86 |
+
"""Extract camera setup recommendation from BAGEL response with improved parsing"""
|
87 |
try:
|
88 |
+
# Look for CAMERA_SETUP section first
|
89 |
if "CAMERA_SETUP:" in description:
|
90 |
parts = description.split("CAMERA_SETUP:")
|
91 |
if len(parts) > 1:
|
92 |
+
camera_section = parts[1].strip()
|
93 |
+
# Take the first meaningful sentence from camera setup
|
94 |
+
camera_text = camera_section.split('\n')[0].strip()
|
95 |
+
if len(camera_text) > 20: # Ensure meaningful content
|
96 |
+
return self._parse_camera_recommendation(camera_text)
|
97 |
|
98 |
+
# Look for "2. CAMERA_SETUP" pattern
|
99 |
+
if "2. CAMERA_SETUP" in description:
|
100 |
+
parts = description.split("2. CAMERA_SETUP")
|
101 |
+
if len(parts) > 1:
|
102 |
+
camera_section = parts[1].strip()
|
103 |
+
camera_text = camera_section.split('\n')[0].strip()
|
104 |
+
if len(camera_text) > 20:
|
105 |
+
return self._parse_camera_recommendation(camera_text)
|
106 |
+
|
107 |
+
# Look for camera recommendations within the text
|
108 |
+
camera_recommendation = self._find_camera_recommendation(description)
|
109 |
+
if camera_recommendation:
|
110 |
+
return camera_recommendation
|
111 |
+
|
112 |
+
return None
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
logger.warning(f"Failed to extract camera setup: {e}")
|
116 |
+
return None
|
117 |
+
|
118 |
+
def _parse_camera_recommendation(self, camera_text: str) -> Optional[str]:
|
119 |
+
"""Parse and extract specific camera and lens information"""
|
120 |
+
try:
|
121 |
+
# Remove common prefixes and clean text
|
122 |
+
camera_text = re.sub(r'^(Based on.*?recommend|I would recommend|For this.*?recommend)\s*', '', camera_text, flags=re.IGNORECASE)
|
123 |
+
camera_text = re.sub(r'^(using a|use a|cameras? like)\s*', '', camera_text, flags=re.IGNORECASE)
|
124 |
+
|
125 |
+
# Extract camera model with specific patterns
|
126 |
camera_patterns = [
|
127 |
+
r'(Canon EOS [R\d]+[^\s,]*(?:\s+[IVX]+)?)',
|
128 |
+
r'(Sony A[^\s,]+(?:\s+[IVX]+)?)',
|
129 |
+
r'(Leica [^\s,]+)',
|
130 |
+
r'(Hasselblad [^\s,]+)',
|
131 |
+
r'(Phase One [^\s,]+)',
|
132 |
+
r'(Fujifilm [^\s,]+)'
|
133 |
]
|
134 |
|
135 |
+
camera_model = None
|
136 |
for pattern in camera_patterns:
|
137 |
+
match = re.search(pattern, camera_text, re.IGNORECASE)
|
138 |
+
if match:
|
139 |
+
camera_model = match.group(1).strip()
|
140 |
+
break
|
141 |
+
|
142 |
+
# Extract lens information with improved patterns
|
143 |
+
lens_patterns = [
|
144 |
+
r'(\d+mm\s*f/[\d.]+(?:\s*lens)?)',
|
145 |
+
r'(\d+-\d+mm\s*f/[\d.]+(?:\s*lens)?)',
|
146 |
+
r'(with\s+(?:a\s+)?(\d+mm[^,.]*))',
|
147 |
+
r'(paired with.*?(\d+mm[^,.]*))'
|
148 |
+
]
|
149 |
+
|
150 |
+
lens_info = None
|
151 |
+
for pattern in lens_patterns:
|
152 |
+
match = re.search(pattern, camera_text, re.IGNORECASE)
|
153 |
+
if match:
|
154 |
+
lens_info = match.group(1).strip()
|
155 |
+
lens_info = re.sub(r'^(with\s+(?:a\s+)?|paired with\s+)', '', lens_info, flags=re.IGNORECASE)
|
156 |
+
break
|
157 |
+
|
158 |
+
# Extract aperture if not in lens info
|
159 |
+
if not lens_info or 'f/' not in lens_info:
|
160 |
+
aperture_match = re.search(r'(f/[\d.]+)', camera_text)
|
161 |
+
aperture = aperture_match.group(1) if aperture_match else None
|
162 |
+
if aperture and lens_info:
|
163 |
+
lens_info = f"{lens_info} {aperture}"
|
164 |
+
|
165 |
+
# Build clean recommendation
|
166 |
+
parts = []
|
167 |
+
if camera_model:
|
168 |
+
parts.append(camera_model)
|
169 |
+
if lens_info:
|
170 |
+
parts.append(lens_info)
|
171 |
+
|
172 |
+
if parts:
|
173 |
+
result = ', '.join(parts)
|
174 |
+
logger.info(f"Parsed camera recommendation: {result}")
|
175 |
+
return result
|
176 |
|
177 |
return None
|
178 |
|
179 |
except Exception as e:
|
180 |
+
logger.warning(f"Failed to parse camera recommendation: {e}")
|
181 |
+
return None
|
182 |
+
|
183 |
+
def _find_camera_recommendation(self, text: str) -> Optional[str]:
|
184 |
+
"""Find camera recommendations anywhere in the text"""
|
185 |
+
try:
|
186 |
+
# Look for sentences containing camera info
|
187 |
+
sentences = re.split(r'[.!?]', text)
|
188 |
+
|
189 |
+
for sentence in sentences:
|
190 |
+
# Check if sentence contains camera info
|
191 |
+
if any(brand in sentence.lower() for brand in ['canon', 'sony', 'leica', 'hasselblad', 'phase one', 'fujifilm']):
|
192 |
+
if any(term in sentence.lower() for term in ['recommend', 'suggest', 'would use', 'camera', 'lens']):
|
193 |
+
parsed = self._parse_camera_recommendation(sentence.strip())
|
194 |
+
if parsed:
|
195 |
+
return parsed
|
196 |
+
|
197 |
+
return None
|
198 |
+
|
199 |
+
except Exception as e:
|
200 |
+
logger.warning(f"Failed to find camera recommendation: {e}")
|
201 |
return None
|
202 |
|
203 |
def _save_temp_image(self, image: Image.Image) -> str:
|
|
|
249 |
}
|
250 |
|
251 |
try:
|
252 |
+
# Enhanced prompt for better structured output
|
253 |
if prompt is None:
|
254 |
+
prompt = """Analyze this image for professional photography reproduction. Provide exactly two sections:
|
255 |
|
256 |
+
1. DESCRIPTION: Write a single flowing paragraph describing what you see. Start directly with the subject (e.g., "A color photograph showing..." or "A black and white image depicting..."). Include:
|
257 |
+
- Image type (photograph, illustration, artwork)
|
258 |
+
- Subject and composition
|
259 |
+
- Color palette and lighting conditions
|
260 |
+
- Mood and atmosphere
|
261 |
+
- Photographic style and format
|
262 |
|
263 |
+
2. CAMERA_SETUP: Based on the scene type you observe, recommend ONE specific professional camera and lens combination:
|
264 |
+
- For street/documentary scenes: Canon EOS R6 with 35mm f/1.4 lens
|
265 |
+
- For portrait photography: Canon EOS R5 with 85mm f/1.4 lens
|
266 |
+
- For landscape photography: Phase One XT with 24-70mm f/4 lens
|
267 |
+
- For action/sports: Sony A1 with 70-200mm f/2.8 lens
|
|
|
|
|
|
|
268 |
|
269 |
+
Give only the camera model and lens specification, nothing else."""
|
270 |
|
271 |
# Save image to temporary file
|
272 |
temp_path = self._save_temp_image(image)
|
|
|
281 |
prompt=prompt,
|
282 |
show_thinking=False,
|
283 |
do_sample=False,
|
284 |
+
text_temperature=0.2,
|
285 |
max_new_tokens=512,
|
286 |
api_name=self.api_endpoint
|
287 |
)
|
|
|
292 |
else:
|
293 |
description = str(result)
|
294 |
|
295 |
+
# Process the description and extract camera setup
|
296 |
if isinstance(description, str) and description.strip():
|
297 |
description = description.strip()
|
298 |
|
299 |
+
# Extract camera setup with improved parsing
|
300 |
camera_setup = self._extract_camera_setup(description)
|
301 |
if camera_setup:
|
302 |
metadata["camera_setup"] = camera_setup
|
303 |
metadata["has_camera_suggestion"] = True
|
304 |
+
logger.info(f"Extracted camera setup: {camera_setup}")
|
305 |
else:
|
306 |
metadata["has_camera_suggestion"] = False
|
307 |
+
logger.warning("No valid camera setup found in BAGEL response")
|
308 |
else:
|
309 |
description = "Detailed image analysis completed successfully"
|
310 |
metadata["has_camera_suggestion"] = False
|
|
|
314 |
"response_length": len(description)
|
315 |
})
|
316 |
|
317 |
+
logger.info(f"BAGEL API analysis complete: {len(description)} characters, Camera: {metadata.get('has_camera_suggestion', False)}")
|
318 |
return description, metadata
|
319 |
|
320 |
except Exception as e:
|
|
|
328 |
|
329 |
def analyze_for_flux_prompt(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
|
330 |
"""Analyze image specifically for FLUX prompt generation"""
|
331 |
+
flux_prompt = """Analyze this image for professional FLUX generation. Provide exactly two sections:
|
332 |
|
333 |
+
1. DESCRIPTION: Create a single flowing paragraph starting directly with the subject. Be precise about:
|
334 |
+
- Image type (photograph, illustration, artwork)
|
335 |
+
- Subject matter and composition
|
336 |
+
- Color palette (specific colors, warm/cool tones, monochrome)
|
337 |
+
- Lighting conditions and photographic style
|
338 |
+
- Mood, atmosphere, and artistic elements
|
339 |
+
|
340 |
+
2. CAMERA_SETUP: Recommend ONE specific professional camera and lens for this scene type:
|
341 |
+
- Street/urban/documentary: Canon EOS R6 with 35mm f/1.4 lens
|
342 |
+
- Portrait photography: Canon EOS R5 with 85mm f/1.4 lens
|
343 |
+
- Landscape photography: Phase One XT with 24-70mm f/4 lens
|
344 |
+
- Action/sports: Sony A1 with 70-200mm f/2.8 lens
|
345 |
|
346 |
+
Give only the camera model and exact lens specification."""
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
return self.analyze_image(image, flux_prompt)
|
349 |
|