Malaji71 commited on
Commit
6423742
Β·
verified Β·
1 Parent(s): d1fd3fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +624 -624
app.py CHANGED
@@ -21,36 +21,36 @@ logger = logging.getLogger(__name__)
21
 
22
  def get_device():
23
  if torch.cuda.is_available():
24
- return "cuda"
25
  elif torch.backends.mps.is_available():
26
  return "mps"
27
- else:
28
- return "cpu"
29
 
30
- DEVICE = get_device()
31
 
32
- class UltraSupremeAnalyzer:
33
- """
34
- ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
35
- """
36
 
37
- def __init__(self):
38
- self.forbidden_elements = ["++", "weights", "white background [en dev]"]
39
 
40
  # ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
41
 
42
- self.micro_age_indicators = {
43
- "infant": ["baby", "infant", "newborn", "toddler"],
44
- "child": ["child", "kid", "young", "little", "small", "youth"],
45
- "teen": ["teenager", "teen", "adolescent", "young adult", "student"],
46
- "young_adult": ["young adult", "twenties", "thirty", "youthful", "fresh"],
47
- "middle_aged": ["middle-aged", "forties", "fifties", "mature", "experienced"],
48
- "senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
49
- "elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
50
- }
51
-
52
- self.ultra_facial_analysis = {
53
- "eye_features": {
54
  "shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
55
  "expression": ["intense gaze", "piercing stare", "gentle eyes", "wise eyes", "tired eyes", "alert eyes", "contemplative stare", "focused gaze", "distant look"],
56
  "color": ["brown eyes", "blue eyes", "green eyes", "hazel eyes", "dark eyes", "light eyes"],
@@ -59,516 +59,516 @@ class UltraSupremeAnalyzer:
59
  "eyebrow_analysis": ["thick eyebrows", "thin eyebrows", "bushy eyebrows", "arched eyebrows", "straight eyebrows", "gray eyebrows"],
60
  "nose_features": ["prominent nose", "straight nose", "aquiline nose", "small nose", "wide nose", "narrow nose"],
61
  "mouth_expression": {
62
- "shape": ["thin lips", "full lips", "small mouth", "wide mouth"],
63
- "expression": ["slight smile", "serious expression", "frown", "neutral expression", "contemplative look", "stern look", "gentle expression"]
64
- },
65
- "facial_hair_ultra": {
66
- "beard_types": ["full beard", "goatee", "mustache", "stubble", "clean-shaven", "five o'clock shadow"],
67
- "beard_texture": ["thick beard", "thin beard", "coarse beard", "fine beard", "well-groomed beard", "unkempt beard"],
68
- "beard_color": ["black beard", "brown beard", "gray beard", "grey beard", "silver beard", "white beard", "salt-and-pepper beard", "graying beard"],
69
- "beard_length": ["long beard", "short beard", "trimmed beard", "full-length beard"]
70
- },
71
- "skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
72
- "facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
73
- }
74
-
75
- self.emotion_micro_expressions = {
76
- "primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
77
- "complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
78
- "emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
79
- }
80
-
81
- self.cultural_religious_ultra = {
82
- "jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
83
- "christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
84
- "muslim": ["Muslim", "Islamic", "religious Muslim", "devout Muslim"],
85
- "buddhist": ["Buddhist", "monk", "religious Buddhist"],
86
- "general_religious": ["religious", "devout", "pious", "spiritual", "faithful", "observant"],
87
- "traditional_clothing": {
88
- "jewish": ["yarmulke", "kippah", "tallit", "tzitzit", "black hat", "Orthodox hat", "religious hat", "traditional Jewish hat"],
89
- "general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
90
- }
91
- }
92
- self.clothing_accessories_ultra = {
93
- "headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
94
- "eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
95
- "clothing_types": ["suit", "jacket", "shirt", "dress", "robe", "uniform", "casual wear", "formal wear", "business attire"],
96
- "clothing_colors": ["black", "white", "gray", "blue", "red", "green", "brown", "navy", "dark", "light"],
97
- "clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
98
- "accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
99
- }
100
-
101
- self.environmental_ultra_analysis = {
102
- "indoor_settings": {
103
- "residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
104
- "office": ["office", "workplace", "conference room", "meeting room", "boardroom", "desk"],
105
- "institutional": ["school", "hospital", "government building", "court", "library"],
106
- "religious": ["church", "synagogue", "mosque", "temple", "chapel", "sanctuary"],
107
- "commercial": ["store", "restaurant", "hotel", "mall", "shop"]
108
- },
109
- "outdoor_settings": {
110
- "natural": ["park", "garden", "forest", "beach", "mountain", "countryside", "field"],
111
- "urban": ["street", "city", "downtown", "plaza", "square", "avenue"],
112
- "architectural": ["building", "monument", "bridge", "structure"]
113
- },
114
- "lighting_ultra": {
115
- "natural_light": ["sunlight", "daylight", "morning light", "afternoon light", "evening light", "golden hour", "blue hour", "overcast light", "window light"],
116
- "artificial_light": ["indoor lighting", "electric light", "lamp light", "overhead lighting", "side lighting", "fluorescent", "LED lighting"],
117
- "dramatic_lighting": ["high contrast", "low key", "high key", "chiaroscuro", "dramatic shadows", "rim lighting", "backlighting", "spotlight"],
118
- "quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
119
- }
120
- }
121
-
122
- self.pose_body_language_ultra = {
123
- "head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
124
- "posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
125
- "hand_positions": ["hands clasped", "hands folded", "hands visible", "hands hidden", "gesturing", "pointing"],
126
- "sitting_positions": ["sitting upright", "leaning forward", "leaning back", "sitting casually", "formal sitting"],
127
- "eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
128
- "overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
129
- }
130
-
131
- self.composition_photography_ultra = {
132
- "shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
133
- "angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
134
- "framing": ["centered", "off-center", "rule of thirds", "tight framing", "loose framing"],
135
- "depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
136
- "camera_movement": ["static", "handheld", "stabilized", "smooth"]
137
- }
138
-
139
- self.technical_photography_ultra = {
140
- "camera_systems": {
141
- "professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
142
- "medium_format": ["Phase One", "Hasselblad", "Fujifilm GFX", "Pentax 645"],
143
- "full_frame": ["Canon EOS R", "Nikon Z", "Sony A7", "Leica SL"]
144
- },
145
- "lenses_ultra": {
146
- "portrait": ["85mm f/1.4", "135mm f/2", "105mm f/1.4", "200mm f/2.8"],
147
- "standard": ["50mm f/1.4", "35mm f/1.4", "24-70mm f/2.8"],
148
- "wide": ["24mm f/1.4", "16-35mm f/2.8", "14mm f/2.8"]
149
- },
150
- "aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
151
- "photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
152
- }
153
-
154
- self.quality_descriptors_ultra = {
155
- "based_on_age": {
156
- "elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
157
- "middle_aged": ["professional", "accomplished", "established", "confident", "mature", "refined", "sophisticated"],
158
- "young_adult": ["vibrant", "energetic", "fresh", "youthful", "dynamic", "spirited", "lively"]
159
- },
160
- "based_on_emotion": {
161
- "contemplative": ["thoughtful", "reflective", "meditative", "introspective"],
162
- "confident": ["assured", "self-possessed", "commanding", "authoritative"],
163
- "gentle": ["kind", "warm", "compassionate", "tender"],
164
- "stern": ["serious", "grave", "solemn", "austere"]
165
- },
166
- "based_on_setting": {
167
- "formal": ["professional", "official", "ceremonial", "dignified"],
168
- "casual": ["relaxed", "informal", "comfortable", "natural"],
169
- "artistic": ["creative", "expressive", "aesthetic", "artistic"]
170
- }
171
- }
172
 
173
- def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
174
- """ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
175
-
176
- combined_analysis = {
177
- "fast": clip_fast.lower(),
178
- "classic": clip_classic.lower(),
179
- "best": clip_best.lower(),
180
- "combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
181
- }
182
-
183
- ultra_result = {
184
- "demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
185
- "facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
186
- "emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []},
187
- "clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []},
188
- "environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []},
189
- "pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []},
190
- "technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
191
- "intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
192
- }
193
 
194
  # ULTRA DEEP AGE ANALYSIS
195
- age_scores = {}
196
- for age_category, indicators in self.micro_age_indicators.items():
197
- score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
198
- if score > 0:
199
- age_scores[age_category] = score
200
 
201
- if age_scores:
202
- ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
203
- ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
204
 
205
  # GENDER DETECTION WITH CONFIDENCE
206
- male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
207
- female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
208
 
209
- male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
210
- female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
211
 
212
- if male_score > female_score:
213
- ultra_result["demographic"]["gender"] = "man"
214
- elif female_score > male_score:
215
- ultra_result["demographic"]["gender"] = "woman"
216
 
217
  # ULTRA CULTURAL/RELIGIOUS ANALYSIS
218
- for culture_type, indicators in self.cultural_religious_ultra.items():
219
- if isinstance(indicators, list):
220
- for indicator in indicators:
221
- if indicator.lower() in combined_analysis["combined"]:
222
- ultra_result["demographic"]["cultural_religious"].append(indicator)
223
 
224
  # COMPREHENSIVE FACIAL FEATURE ANALYSIS
225
- for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
226
- for feature in features:
227
- if feature in combined_analysis["combined"]:
228
- ultra_result["facial_ultra"]["facial_hair"].append(feature)
229
 
230
  # Eyes analysis
231
- for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
232
- for feature in features:
233
- if feature in combined_analysis["combined"]:
234
- ultra_result["facial_ultra"]["eyes"].append(feature)
235
 
236
  # EMOTION AND MICRO-EXPRESSION ANALYSIS
237
- emotion_scores = {}
238
- for emotion in self.emotion_micro_expressions["complex_emotions"]:
239
- if emotion in combined_analysis["combined"]:
240
- emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
241
 
242
- if emotion_scores:
243
- ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
244
- ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
245
 
246
  # CLOTHING AND ACCESSORIES ANALYSIS
247
- for category, items in self.clothing_accessories_ultra.items():
248
- if isinstance(items, list):
249
- for item in items:
250
- if item in combined_analysis["combined"]:
251
- ultra_result["clothing_accessories"][category].append(item)
252
 
253
  # ENVIRONMENTAL ULTRA ANALYSIS
254
- setting_scores = {}
255
- for main_setting, sub_settings in self.environmental_ultra_analysis.items():
256
- if isinstance(sub_settings, dict):
257
- for sub_type, locations in sub_settings.items():
258
- score = sum(1 for location in locations if location in combined_analysis["combined"])
259
- if score > 0:
260
- setting_scores[sub_type] = score
261
 
262
- if setting_scores:
263
- ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
264
 
265
  # LIGHTING ANALYSIS
266
- for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
267
- for light_type in light_types:
268
- if light_type in combined_analysis["combined"]:
269
- ultra_result["environmental"]["lighting_analysis"].append(light_type)
270
 
271
  # POSE AND BODY LANGUAGE ANALYSIS
272
- for pose_category, indicators in self.pose_body_language_ultra.items():
273
- for indicator in indicators:
274
- if indicator in combined_analysis["combined"]:
275
- ultra_result["pose_composition"][pose_category].append(indicator)
276
 
277
  # TECHNICAL PHOTOGRAPHY ANALYSIS
278
- for shot_type in self.composition_photography_ultra["shot_types"]:
279
- if shot_type in combined_analysis["combined"]:
280
- ultra_result["technical_analysis"]["shot_type"] = shot_type
281
- break
282
 
283
  # CALCULATE INTELLIGENCE METRICS
284
- total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
285
- ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
286
- ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
287
- ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
288
 
289
- return ultra_result
290
- def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
291
- """BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
292
 
293
- components = []
294
 
295
  # 1. ULTRA INTELLIGENT ARTICLE SELECTION
296
- subject_desc = []
297
- if ultra_analysis["demographic"]["cultural_religious"]:
298
- subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
299
- if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
300
- subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
301
- if ultra_analysis["demographic"]["gender"]:
302
- subject_desc.append(ultra_analysis["demographic"]["gender"])
303
-
304
- if subject_desc:
305
- full_subject = " ".join(subject_desc)
306
- article = "An" if full_subject[0].lower() in 'aeiou' else "A"
307
- else:
308
- article = "A"
309
- components.append(article)
310
 
311
  # 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
312
- adjectives = []
313
 
314
  # Age-based adjectives
315
- age_cat = ultra_analysis["demographic"]["age_category"]
316
- if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
317
- adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
318
 
319
  # Emotion-based adjectives
320
- emotion = ultra_analysis["emotional_state"]["primary_emotion"]
321
- if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
322
- adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
323
 
324
  # Default if none found
325
- if not adjectives:
326
- adjectives = ["distinguished", "professional"]
327
 
328
- components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
329
 
330
  # 3. ULTRA ENHANCED SUBJECT
331
- if subject_desc:
332
- components.append(" ".join(subject_desc))
333
- else:
334
- components.append("person")
335
 
336
  # 4. ULTRA DETAILED FACIAL FEATURES
337
- facial_details = []
338
 
339
  # Eyes
340
- if ultra_analysis["facial_ultra"]["eyes"]:
341
- eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
342
- facial_details.append(f"with {eye_desc}")
343
 
344
  # Facial hair with ultra detail
345
- if ultra_analysis["facial_ultra"]["facial_hair"]:
346
- beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
347
- if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
348
- facial_details.append("with a distinguished silver beard")
349
- elif any("beard" in detail for detail in beard_details):
350
- facial_details.append("with a full well-groomed beard")
351
 
352
- if facial_details:
353
- components.extend(facial_details)
354
 
355
  # 5. CLOTHING AND ACCESSORIES ULTRA
356
- clothing_details = []
357
 
358
  # Eyewear
359
- if ultra_analysis["clothing_accessories"]["eyewear"]:
360
- eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
361
- clothing_details.append(f"wearing {eyewear}")
362
 
363
  # Headwear
364
- if ultra_analysis["clothing_accessories"]["headwear"]:
365
- headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
366
- if ultra_analysis["demographic"]["cultural_religious"]:
367
- clothing_details.append("wearing a traditional black hat")
368
- else:
369
- clothing_details.append(f"wearing a {headwear}")
370
 
371
- if clothing_details:
372
- components.extend(clothing_details)
373
 
374
  # 6. ULTRA POSE AND BODY LANGUAGE
375
- pose_description = "positioned with natural dignity"
376
 
377
- if ultra_analysis["pose_composition"]["posture"]:
378
- posture = ultra_analysis["pose_composition"]["posture"][0]
379
- pose_description = f"maintaining {posture}"
380
- elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
381
- pose_description = "captured in contemplative portrait pose"
382
 
383
- components.append(pose_description)
384
 
385
  # 7. ULTRA ENVIRONMENTAL CONTEXT
386
- environment_desc = "in a thoughtfully composed environment"
387
 
388
- if ultra_analysis["environmental"]["setting_type"]:
389
- setting_map = {
390
- "residential": "in an intimate home setting",
391
- "office": "in a professional office environment",
392
- "religious": "in a sacred traditional space",
393
- "formal": "in a distinguished formal setting"
394
- }
395
- environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
396
 
397
- components.append(environment_desc)
398
 
399
  # 8. ULTRA SOPHISTICATED LIGHTING
400
- lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
401
 
402
- if ultra_analysis["environmental"]["lighting_analysis"]:
403
- primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
404
- if "dramatic" in primary_light:
405
- lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play"
406
- elif "natural" in primary_light or "window" in primary_light:
407
- lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
408
- elif "soft" in primary_light:
409
- lighting_desc = "softly illuminated to reveal nuanced expressions and character"
410
 
411
- components.append(lighting_desc)
412
 
413
  # 9. ULTRA TECHNICAL SPECIFICATIONS
414
- if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
415
- camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
416
- elif ultra_analysis["demographic"]["cultural_religious"]:
417
- camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
418
- else:
419
- camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
420
 
421
- components.append(camera_setup)
422
 
423
  # 10. ULTRA QUALITY DESIGNATION
424
- quality_designation = "professional portrait photography"
425
 
426
- if ultra_analysis["demographic"]["cultural_religious"]:
427
- quality_designation = "fine art documentary photography"
428
- elif ultra_analysis["emotional_state"]["primary_emotion"]:
429
- quality_designation = "expressive portrait photography"
430
 
431
- components.append(quality_designation)
432
 
433
  # ULTRA FINAL ASSEMBLY
434
- prompt = ", ".join(components)
435
 
436
  # Ultra cleaning and optimization
437
- prompt = re.sub(r'\s+', ' ', prompt)
438
- prompt = re.sub(r',\s*,+', ',', prompt)
439
- prompt = re.sub(r'\s*,\s*', ', ', prompt)
440
- prompt = prompt.replace(" ,", ",")
441
 
442
- if prompt:
443
- prompt = prompt[0].upper() + prompt[1:]
444
 
445
- return prompt
446
 
447
- def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
448
- """ULTRA SUPREME INTELLIGENCE SCORING"""
449
 
450
- score = 0
451
- breakdown = {}
452
 
453
  # Structure Excellence (15 points)
454
- structure_score = 0
455
- if prompt.startswith(("A", "An")):
456
- structure_score += 5
457
- if prompt.count(",") >= 8:
458
- structure_score += 10
459
- score += structure_score
460
- breakdown["structure"] = structure_score
461
 
462
  # Feature Detection Depth (25 points)
463
- features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
464
- score += features_score
465
- breakdown["features"] = features_score
466
 
467
  # Cultural/Religious Awareness (20 points)
468
- cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
469
- score += cultural_score
470
- breakdown["cultural"] = cultural_score
471
 
472
  # Emotional Intelligence (15 points)
473
- emotion_score = 0
474
- if ultra_analysis["emotional_state"]["primary_emotion"]:
475
- emotion_score += 10
476
- if ultra_analysis["emotional_state"]["emotion_confidence"] > 1:
477
- emotion_score += 5
478
- score += emotion_score
479
  breakdown["emotional"] = emotion_score
480
 
481
  # Technical Sophistication (15 points)
482
- tech_score = 0
483
- if "Phase One" in prompt or "Hasselblad" in prompt:
484
- tech_score += 5
485
- if any(aperture in prompt for aperture in ["f/1.4", "f/2.8", "f/4"]):
486
- tech_score += 5
487
- if any(lens in prompt for lens in ["85mm", "90mm", "80mm"]):
488
- tech_score += 5
489
- score += tech_score
490
- breakdown["technical"] = tech_score
491
 
492
  # Environmental Context (10 points)
493
- env_score = 0
494
- if ultra_analysis["environmental"]["setting_type"]:
495
- env_score += 5
496
- if ultra_analysis["environmental"]["lighting_analysis"]:
497
- env_score += 5
498
- score += env_score
499
- breakdown["environmental"] = env_score
500
-
501
- return min(score, 100), breakdown
502
 
503
 
504
  class UltraSupremeOptimizer:
505
- def __init__(self):
506
- self.interrogator = None
507
- self.analyzer = UltraSupremeAnalyzer()
508
- self.usage_count = 0
509
- self.device = DEVICE
510
- self.is_initialized = False
511
 
512
- def initialize_model(self):
513
- if self.is_initialized:
514
- return True
515
-
516
- try:
517
- config = Config(
518
- clip_model_name="ViT-L-14/openai",
519
- download_cache=True,
520
- chunk_size=2048,
521
- quiet=True,
522
- device=self.device
523
- )
524
 
525
- self.interrogator = Interrogator(config)
526
- self.is_initialized = True
527
 
528
- if self.device == "cpu":
529
- gc.collect()
530
- else:
531
- torch.cuda.empty_cache()
532
 
533
- return True
534
 
535
- except Exception as e:
536
- logger.error(f"Initialization error: {e}")
537
- return False
538
 
539
- def optimize_image(self, image):
540
- if image is None:
541
- return None
542
 
543
- if isinstance(image, np.ndarray):
544
- image = Image.fromarray(image)
545
- elif not isinstance(image, Image.Image):
546
- image = Image.open(image)
547
 
548
- if image.mode != 'RGB':
549
- image = image.convert('RGB')
550
 
551
- max_size = 768 if self.device != "cpu" else 512
552
- if image.size[0] > max_size or image.size[1] > max_size:
553
- image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
554
 
555
- return image
556
 
557
  @spaces.GPU
558
  def generate_ultra_supreme_prompt(self, image):
559
  try:
560
  if not self.is_initialized:
561
- if not self.initialize_model():
562
- return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
563
 
564
  if image is None:
565
- return "❌ Please upload an image.", "No image provided.", 0, {}
566
 
567
  self.usage_count += 1
568
 
569
  image = self.optimize_image(image)
570
  if image is None:
571
- return "❌ Image processing failed.", "Invalid image format.", 0, {}
572
 
573
  start_time = datetime.now()
574
 
@@ -595,264 +595,264 @@ class UltraSupremeOptimizer:
595
 
596
  # Memory cleanup
597
  if self.device == "cpu":
598
- gc.collect()
599
  else:
600
  torch.cuda.empty_cache()
601
 
602
  # ULTRA COMPREHENSIVE ANALYSIS REPORT
603
- gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
604
 
605
  # Format detected elements
606
- features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
607
- cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
608
- clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
609
 
610
- analysis_info = f"""**πŸš€ ULTRA SUPREME ANALYSIS COMPLETE**
611
- **Processing:** {gpu_status} β€’ {duration:.1f}s β€’ Triple CLIP Ultra Intelligence
612
- **Ultra Score:** {score}/100 β€’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
613
- **Generation:** #{self.usage_count}
614
- **🧠 ULTRA DEEP DETECTION:**
615
- - **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
616
- - **Cultural Context:** {cultural}
617
- - **Facial Features:** {features}
618
- - **Accessories:** {clothing}
619
- - **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
620
- - **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
621
- - **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
622
- **πŸ“Š CLIP ANALYSIS SOURCES:**
623
- - **Fast:** {clip_fast[:50]}...
624
- - **Classic:** {clip_classic[:50]}...
625
- - **Best:** {clip_best[:50]}...
626
- **⚑ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
627
 
628
- return optimized_prompt, analysis_info, score, breakdown
629
 
630
- except Exception as e:
631
- logger.error(f"Ultra supreme generation error: {e}")
632
- return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
633
 
634
  # Initialize the optimizer
635
- optimizer = UltraSupremeOptimizer()
636
 
637
- def process_ultra_supreme_analysis(image):
638
- """Ultra supreme analysis wrapper"""
639
- try:
640
- prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
641
 
642
  # Ultra enhanced score display
643
- if score >= 95:
644
- color = "#059669"
645
- grade = "LEGENDARY"
646
- elif score >= 90:
647
- color = "#10b981"
648
- grade = "EXCELLENT"
649
- elif score >= 80:
650
- color = "#22c55e"
651
- grade = "VERY GOOD"
652
- elif score >= 70:
653
- color = "#f59e0b"
654
- grade = "GOOD"
655
- elif score >= 60:
656
- color = "#f97316"
657
- grade = "FAIR"
658
- else:
659
- color = "#ef4444"
660
- grade = "NEEDS WORK"
661
 
662
- score_html = f'''
663
- <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
664
- <div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
665
- <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade}</div>
666
- <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
667
- </div>
668
- '''
669
-
670
- return prompt, info, score_html
671
-
672
- except Exception as e:
673
- logger.error(f"Ultra supreme wrapper error: {e}")
674
- return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
675
 
676
- def clear_outputs():
677
- gc.collect()
678
- if torch.cuda.is_available():
679
- torch.cuda.empty_cache()
680
- return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
681
 
682
- def create_interface():
683
- css = """
684
- @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
685
 
686
- .gradio-container {
687
- max-width: 1600px !important;
688
- margin: 0 auto !important;
689
- font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
690
- background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
691
- }
692
 
693
- .main-header {
694
- text-align: center;
695
- padding: 3rem 0 4rem 0;
696
- background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
697
- color: white;
698
- margin: -2rem -2rem 3rem -2rem;
699
- border-radius: 0 0 32px 32px;
700
- box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
701
- position: relative;
702
- overflow: hidden;
703
- }
704
 
705
- .main-header::before {
706
- content: '';
707
- position: absolute;
708
- top: 0;
709
- left: 0;
710
- right: 0;
711
- bottom: 0;
712
- background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
713
- z-index: 1;
714
- }
715
 
716
- .main-title {
717
- font-size: 4rem !important;
718
- font-weight: 900 !important;
719
- margin: 0 0 1rem 0 !important;
720
- letter-spacing: -0.05em !important;
721
- background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
722
- -webkit-background-clip: text;
723
- -webkit-text-fill-color: transparent;
724
- background-clip: text;
725
- position: relative;
726
- z-index: 2;
727
- }
728
 
729
- .subtitle {
730
- font-size: 1.5rem !important;
731
- font-weight: 500 !important;
732
- opacity: 0.95 !important;
733
- margin: 0 !important;
734
- position: relative;
735
- z-index: 2;
736
- }
737
 
738
- .prompt-output {
739
- font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
740
- font-size: 15px !important;
741
- line-height: 1.8 !important;
742
- background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
743
- border: 2px solid #e2e8f0 !important;
744
- border-radius: 20px !important;
745
- padding: 2.5rem !important;
746
- box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
747
- transition: all 0.3s ease !important;
748
- }
749
 
750
- .prompt-output:hover {
751
- box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
752
- transform: translateY(-2px) !important;
753
- }
754
- """
755
 
756
- with gr.Blocks(
757
- theme=gr.themes.Soft(),
758
- title="πŸš€ Ultra Supreme Flux Optimizer",
759
- css=css
760
- ) as interface:
761
-
762
- gr.HTML("""
763
- <div class="main-header">
764
- <div class="main-title">πŸš€ ULTRA SUPREME FLUX OPTIMIZER</div>
765
- <div class="subtitle">Maximum Absolute Intelligence β€’ Triple CLIP Analysis β€’ Zero Compromise β€’ Research Supremacy</div>
766
- </div>
767
- """)
768
-
769
- with gr.Row():
770
- with gr.Column(scale=1):
771
- gr.Markdown("## 🧠 Ultra Supreme Analysis Engine")
772
 
773
- image_input = gr.Image(
774
- label="Upload image for MAXIMUM intelligence analysis",
775
- type="pil",
776
- height=500
777
- )
778
 
779
- analyze_btn = gr.Button(
780
- "πŸš€ ULTRA SUPREME ANALYSIS",
781
- variant="primary",
782
- size="lg"
783
- )
784
 
785
- gr.Markdown("""
786
  ### πŸ”¬ Maximum Absolute Intelligence
787
 
788
- **πŸš€ Triple CLIP Interrogation:**
789
- β€’ Fast analysis for broad contextual mapping
790
- β€’ Classic analysis for detailed feature extraction
791
- β€’ Best analysis for maximum depth intelligence
792
 
793
- **🧠 Ultra Deep Feature Extraction:**
794
- β€’ Micro-age detection with confidence scoring
795
- β€’ Cultural/religious context with semantic analysis
796
- β€’ Facial micro-features and expression mapping
797
- β€’ Emotional state and micro-expression detection
798
- β€’ Environmental lighting and atmospheric analysis
799
- β€’ Body language and pose interpretation
800
- β€’ Technical photography optimization
801
 
802
- **⚑ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
803
- """)
804
 
805
- with gr.Column(scale=1):
806
- gr.Markdown("## ⚑ Ultra Supreme Result")
807
 
808
- prompt_output = gr.Textbox(
809
- label="πŸš€ Ultra Supreme Optimized Flux Prompt",
810
- placeholder="Upload an image to witness absolute maximum intelligence analysis...",
811
- lines=12,
812
- max_lines=20,
813
- elem_classes=["prompt-output"],
814
- show_copy_button=True
815
- )
816
 
817
- score_output = gr.HTML(
818
- value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
819
- )
820
 
821
- info_output = gr.Markdown(value="")
822
 
823
- clear_btn = gr.Button("πŸ—‘οΈ Clear Ultra Analysis", size="sm")
824
 
825
  # Event handlers
826
- analyze_btn.click(
827
- fn=process_ultra_supreme_analysis,
828
- inputs=[image_input],
829
- outputs=[prompt_output, info_output, score_output]
830
- )
831
-
832
- clear_btn.click(
833
- fn=clear_outputs,
834
- outputs=[prompt_output, info_output, score_output]
835
- )
836
-
837
- gr.Markdown("""
838
- ---
839
  ### πŸ† Ultra Supreme Research Foundation
840
 
841
- This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
842
- ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
843
- understanding and applies research-validated Flux rules with supreme intelligence.
844
 
845
- **πŸ”¬ Pariente AI Research Laboratory** β€’ **πŸš€ Ultra Supreme Intelligence Engine**
846
- """)
847
 
848
- return interface
849
 
850
  # Launch the application
851
- if __name__ == "__main__":
852
- demo = create_interface()
853
- demo.launch(
854
- server_name="0.0.0.0",
855
- server_port=7860,
856
- share=True,
857
- show_error=True
858
- )
 
21
 
22
  def get_device():
23
  if torch.cuda.is_available():
24
+ return "cuda"
25
  elif torch.backends.mps.is_available():
26
  return "mps"
27
+ else:
28
+ return "cpu"
29
 
30
+ DEVICE = get_device()
31
 
32
+ class UltraSupremeAnalyzer:
33
+ """
34
+ ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
35
+ """
36
 
37
+ def __init__(self):
38
+ self.forbidden_elements = ["++", "weights", "white background [en dev]"]
39
 
40
  # ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
41
 
42
+ self.micro_age_indicators = {
43
+ "infant": ["baby", "infant", "newborn", "toddler"],
44
+ "child": ["child", "kid", "young", "little", "small", "youth"],
45
+ "teen": ["teenager", "teen", "adolescent", "young adult", "student"],
46
+ "young_adult": ["young adult", "twenties", "thirty", "youthful", "fresh"],
47
+ "middle_aged": ["middle-aged", "forties", "fifties", "mature", "experienced"],
48
+ "senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
49
+ "elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
50
+ }
51
+
52
+ self.ultra_facial_analysis = {
53
+ "eye_features": {
54
  "shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
55
  "expression": ["intense gaze", "piercing stare", "gentle eyes", "wise eyes", "tired eyes", "alert eyes", "contemplative stare", "focused gaze", "distant look"],
56
  "color": ["brown eyes", "blue eyes", "green eyes", "hazel eyes", "dark eyes", "light eyes"],
 
59
  "eyebrow_analysis": ["thick eyebrows", "thin eyebrows", "bushy eyebrows", "arched eyebrows", "straight eyebrows", "gray eyebrows"],
60
  "nose_features": ["prominent nose", "straight nose", "aquiline nose", "small nose", "wide nose", "narrow nose"],
61
  "mouth_expression": {
62
+ "shape": ["thin lips", "full lips", "small mouth", "wide mouth"],
63
+ "expression": ["slight smile", "serious expression", "frown", "neutral expression", "contemplative look", "stern look", "gentle expression"]
64
+ },
65
+ "facial_hair_ultra": {
66
+ "beard_types": ["full beard", "goatee", "mustache", "stubble", "clean-shaven", "five o'clock shadow"],
67
+ "beard_texture": ["thick beard", "thin beard", "coarse beard", "fine beard", "well-groomed beard", "unkempt beard"],
68
+ "beard_color": ["black beard", "brown beard", "gray beard", "grey beard", "silver beard", "white beard", "salt-and-pepper beard", "graying beard"],
69
+ "beard_length": ["long beard", "short beard", "trimmed beard", "full-length beard"]
70
+ },
71
+ "skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
72
+ "facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
73
+ }
74
+
75
+ self.emotion_micro_expressions = {
76
+ "primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
77
+ "complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
78
+ "emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
79
+ }
80
+
81
+ self.cultural_religious_ultra = {
82
+ "jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
83
+ "christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
84
+ "muslim": ["Muslim", "Islamic", "religious Muslim", "devout Muslim"],
85
+ "buddhist": ["Buddhist", "monk", "religious Buddhist"],
86
+ "general_religious": ["religious", "devout", "pious", "spiritual", "faithful", "observant"],
87
+ "traditional_clothing": {
88
+ "jewish": ["yarmulke", "kippah", "tallit", "tzitzit", "black hat", "Orthodox hat", "religious hat", "traditional Jewish hat"],
89
+ "general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
90
+ }
91
+ }
92
+ self.clothing_accessories_ultra = {
93
+ "headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
94
+ "eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
95
+ "clothing_types": ["suit", "jacket", "shirt", "dress", "robe", "uniform", "casual wear", "formal wear", "business attire"],
96
+ "clothing_colors": ["black", "white", "gray", "blue", "red", "green", "brown", "navy", "dark", "light"],
97
+ "clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
98
+ "accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
99
+ }
100
+
101
+ self.environmental_ultra_analysis = {
102
+ "indoor_settings": {
103
+ "residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
104
+ "office": ["office", "workplace", "conference room", "meeting room", "boardroom", "desk"],
105
+ "institutional": ["school", "hospital", "government building", "court", "library"],
106
+ "religious": ["church", "synagogue", "mosque", "temple", "chapel", "sanctuary"],
107
+ "commercial": ["store", "restaurant", "hotel", "mall", "shop"]
108
+ },
109
+ "outdoor_settings": {
110
+ "natural": ["park", "garden", "forest", "beach", "mountain", "countryside", "field"],
111
+ "urban": ["street", "city", "downtown", "plaza", "square", "avenue"],
112
+ "architectural": ["building", "monument", "bridge", "structure"]
113
+ },
114
+ "lighting_ultra": {
115
+ "natural_light": ["sunlight", "daylight", "morning light", "afternoon light", "evening light", "golden hour", "blue hour", "overcast light", "window light"],
116
+ "artificial_light": ["indoor lighting", "electric light", "lamp light", "overhead lighting", "side lighting", "fluorescent", "LED lighting"],
117
+ "dramatic_lighting": ["high contrast", "low key", "high key", "chiaroscuro", "dramatic shadows", "rim lighting", "backlighting", "spotlight"],
118
+ "quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
119
+ }
120
+ }
121
+
122
+ self.pose_body_language_ultra = {
123
+ "head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
124
+ "posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
125
+ "hand_positions": ["hands clasped", "hands folded", "hands visible", "hands hidden", "gesturing", "pointing"],
126
+ "sitting_positions": ["sitting upright", "leaning forward", "leaning back", "sitting casually", "formal sitting"],
127
+ "eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
128
+ "overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
129
+ }
130
+
131
+ self.composition_photography_ultra = {
132
+ "shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
133
+ "angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
134
+ "framing": ["centered", "off-center", "rule of thirds", "tight framing", "loose framing"],
135
+ "depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
136
+ "camera_movement": ["static", "handheld", "stabilized", "smooth"]
137
+ }
138
+
139
+ self.technical_photography_ultra = {
140
+ "camera_systems": {
141
+ "professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
142
+ "medium_format": ["Phase One", "Hasselblad", "Fujifilm GFX", "Pentax 645"],
143
+ "full_frame": ["Canon EOS R", "Nikon Z", "Sony A7", "Leica SL"]
144
+ },
145
+ "lenses_ultra": {
146
+ "portrait": ["85mm f/1.4", "135mm f/2", "105mm f/1.4", "200mm f/2.8"],
147
+ "standard": ["50mm f/1.4", "35mm f/1.4", "24-70mm f/2.8"],
148
+ "wide": ["24mm f/1.4", "16-35mm f/2.8", "14mm f/2.8"]
149
+ },
150
+ "aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
151
+ "photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
152
+ }
153
+
154
+ self.quality_descriptors_ultra = {
155
+ "based_on_age": {
156
+ "elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
157
+ "middle_aged": ["professional", "accomplished", "established", "confident", "mature", "refined", "sophisticated"],
158
+ "young_adult": ["vibrant", "energetic", "fresh", "youthful", "dynamic", "spirited", "lively"]
159
+ },
160
+ "based_on_emotion": {
161
+ "contemplative": ["thoughtful", "reflective", "meditative", "introspective"],
162
+ "confident": ["assured", "self-possessed", "commanding", "authoritative"],
163
+ "gentle": ["kind", "warm", "compassionate", "tender"],
164
+ "stern": ["serious", "grave", "solemn", "austere"]
165
+ },
166
+ "based_on_setting": {
167
+ "formal": ["professional", "official", "ceremonial", "dignified"],
168
+ "casual": ["relaxed", "informal", "comfortable", "natural"],
169
+ "artistic": ["creative", "expressive", "aesthetic", "artistic"]
170
+ }
171
+ }
172
 
173
+ def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
174
+ """ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
175
+
176
+ combined_analysis = {
177
+ "fast": clip_fast.lower(),
178
+ "classic": clip_classic.lower(),
179
+ "best": clip_best.lower(),
180
+ "combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
181
+ }
182
+
183
+ ultra_result = {
184
+ "demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
185
+ "facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
186
+ "emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []},
187
+ "clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []},
188
+ "environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []},
189
+ "pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []},
190
+ "technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
191
+ "intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
192
+ }
193
 
194
  # ULTRA DEEP AGE ANALYSIS
195
+ age_scores = {}
196
+ for age_category, indicators in self.micro_age_indicators.items():
197
+ score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
198
+ if score > 0:
199
+ age_scores[age_category] = score
200
 
201
+ if age_scores:
202
+ ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
203
+ ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
204
 
205
  # GENDER DETECTION WITH CONFIDENCE
206
+ male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
207
+ female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
208
 
209
+ male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
210
+ female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
211
 
212
+ if male_score > female_score:
213
+ ultra_result["demographic"]["gender"] = "man"
214
+ elif female_score > male_score:
215
+ ultra_result["demographic"]["gender"] = "woman"
216
 
217
  # ULTRA CULTURAL/RELIGIOUS ANALYSIS
218
+ for culture_type, indicators in self.cultural_religious_ultra.items():
219
+ if isinstance(indicators, list):
220
+ for indicator in indicators:
221
+ if indicator.lower() in combined_analysis["combined"]:
222
+ ultra_result["demographic"]["cultural_religious"].append(indicator)
223
 
224
  # COMPREHENSIVE FACIAL FEATURE ANALYSIS
225
+ for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
226
+ for feature in features:
227
+ if feature in combined_analysis["combined"]:
228
+ ultra_result["facial_ultra"]["facial_hair"].append(feature)
229
 
230
  # Eyes analysis
231
+ for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
232
+ for feature in features:
233
+ if feature in combined_analysis["combined"]:
234
+ ultra_result["facial_ultra"]["eyes"].append(feature)
235
 
236
  # EMOTION AND MICRO-EXPRESSION ANALYSIS
237
+ emotion_scores = {}
238
+ for emotion in self.emotion_micro_expressions["complex_emotions"]:
239
+ if emotion in combined_analysis["combined"]:
240
+ emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
241
 
242
+ if emotion_scores:
243
+ ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
244
+ ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
245
 
246
  # CLOTHING AND ACCESSORIES ANALYSIS
247
+ for category, items in self.clothing_accessories_ultra.items():
248
+ if isinstance(items, list):
249
+ for item in items:
250
+ if item in combined_analysis["combined"]:
251
+ ultra_result["clothing_accessories"][category].append(item)
252
 
253
  # ENVIRONMENTAL ULTRA ANALYSIS
254
+ setting_scores = {}
255
+ for main_setting, sub_settings in self.environmental_ultra_analysis.items():
256
+ if isinstance(sub_settings, dict):
257
+ for sub_type, locations in sub_settings.items():
258
+ score = sum(1 for location in locations if location in combined_analysis["combined"])
259
+ if score > 0:
260
+ setting_scores[sub_type] = score
261
 
262
+ if setting_scores:
263
+ ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
264
 
265
  # LIGHTING ANALYSIS
266
+ for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
267
+ for light_type in light_types:
268
+ if light_type in combined_analysis["combined"]:
269
+ ultra_result["environmental"]["lighting_analysis"].append(light_type)
270
 
271
  # POSE AND BODY LANGUAGE ANALYSIS
272
+ for pose_category, indicators in self.pose_body_language_ultra.items():
273
+ for indicator in indicators:
274
+ if indicator in combined_analysis["combined"]:
275
+ ultra_result["pose_composition"][pose_category].append(indicator)
276
 
277
  # TECHNICAL PHOTOGRAPHY ANALYSIS
278
+ for shot_type in self.composition_photography_ultra["shot_types"]:
279
+ if shot_type in combined_analysis["combined"]:
280
+ ultra_result["technical_analysis"]["shot_type"] = shot_type
281
+ break
282
 
283
  # CALCULATE INTELLIGENCE METRICS
284
+ total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
285
+ ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
286
+ ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
287
+ ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
288
 
289
+ return ultra_result
290
+ def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
291
+ """BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
292
 
293
+ components = []
294
 
295
  # 1. ULTRA INTELLIGENT ARTICLE SELECTION
296
+ subject_desc = []
297
+ if ultra_analysis["demographic"]["cultural_religious"]:
298
+ subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
299
+ if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
300
+ subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
301
+ if ultra_analysis["demographic"]["gender"]:
302
+ subject_desc.append(ultra_analysis["demographic"]["gender"])
303
+
304
+ if subject_desc:
305
+ full_subject = " ".join(subject_desc)
306
+ article = "An" if full_subject[0].lower() in 'aeiou' else "A"
307
+ else:
308
+ article = "A"
309
+ components.append(article)
310
 
311
  # 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
312
+ adjectives = []
313
 
314
  # Age-based adjectives
315
+ age_cat = ultra_analysis["demographic"]["age_category"]
316
+ if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
317
+ adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
318
 
319
  # Emotion-based adjectives
320
+ emotion = ultra_analysis["emotional_state"]["primary_emotion"]
321
+ if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
322
+ adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
323
 
324
  # Default if none found
325
+ if not adjectives:
326
+ adjectives = ["distinguished", "professional"]
327
 
328
+ components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
329
 
330
  # 3. ULTRA ENHANCED SUBJECT
331
+ if subject_desc:
332
+ components.append(" ".join(subject_desc))
333
+ else:
334
+ components.append("person")
335
 
336
  # 4. ULTRA DETAILED FACIAL FEATURES
337
+ facial_details = []
338
 
339
  # Eyes
340
+ if ultra_analysis["facial_ultra"]["eyes"]:
341
+ eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
342
+ facial_details.append(f"with {eye_desc}")
343
 
344
  # Facial hair with ultra detail
345
+ if ultra_analysis["facial_ultra"]["facial_hair"]:
346
+ beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
347
+ if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
348
+ facial_details.append("with a distinguished silver beard")
349
+ elif any("beard" in detail for detail in beard_details):
350
+ facial_details.append("with a full well-groomed beard")
351
 
352
+ if facial_details:
353
+ components.extend(facial_details)
354
 
355
  # 5. CLOTHING AND ACCESSORIES ULTRA
356
+ clothing_details = []
357
 
358
  # Eyewear
359
+ if ultra_analysis["clothing_accessories"]["eyewear"]:
360
+ eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
361
+ clothing_details.append(f"wearing {eyewear}")
362
 
363
  # Headwear
364
+ if ultra_analysis["clothing_accessories"]["headwear"]:
365
+ headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
366
+ if ultra_analysis["demographic"]["cultural_religious"]:
367
+ clothing_details.append("wearing a traditional black hat")
368
+ else:
369
+ clothing_details.append(f"wearing a {headwear}")
370
 
371
+ if clothing_details:
372
+ components.extend(clothing_details)
373
 
374
  # 6. ULTRA POSE AND BODY LANGUAGE
375
+ pose_description = "positioned with natural dignity"
376
 
377
+ if ultra_analysis["pose_composition"]["posture"]:
378
+ posture = ultra_analysis["pose_composition"]["posture"][0]
379
+ pose_description = f"maintaining {posture}"
380
+ elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
381
+ pose_description = "captured in contemplative portrait pose"
382
 
383
+ components.append(pose_description)
384
 
385
  # 7. ULTRA ENVIRONMENTAL CONTEXT
386
+ environment_desc = "in a thoughtfully composed environment"
387
 
388
+ if ultra_analysis["environmental"]["setting_type"]:
389
+ setting_map = {
390
+ "residential": "in an intimate home setting",
391
+ "office": "in a professional office environment",
392
+ "religious": "in a sacred traditional space",
393
+ "formal": "in a distinguished formal setting"
394
+ }
395
+ environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
396
 
397
+ components.append(environment_desc)
398
 
399
  # 8. ULTRA SOPHISTICATED LIGHTING
400
+ lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
401
 
402
+ if ultra_analysis["environmental"]["lighting_analysis"]:
403
+ primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
404
+ if "dramatic" in primary_light:
405
+ lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play"
406
+ elif "natural" in primary_light or "window" in primary_light:
407
+ lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
408
+ elif "soft" in primary_light:
409
+ lighting_desc = "softly illuminated to reveal nuanced expressions and character"
410
 
411
+ components.append(lighting_desc)
412
 
413
  # 9. ULTRA TECHNICAL SPECIFICATIONS
414
+ if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
415
+ camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
416
+ elif ultra_analysis["demographic"]["cultural_religious"]:
417
+ camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
418
+ else:
419
+ camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
420
 
421
+ components.append(camera_setup)
422
 
423
  # 10. ULTRA QUALITY DESIGNATION
424
+ quality_designation = "professional portrait photography"
425
 
426
+ if ultra_analysis["demographic"]["cultural_religious"]:
427
+ quality_designation = "fine art documentary photography"
428
+ elif ultra_analysis["emotional_state"]["primary_emotion"]:
429
+ quality_designation = "expressive portrait photography"
430
 
431
+ components.append(quality_designation)
432
 
433
  # ULTRA FINAL ASSEMBLY
434
+ prompt = ", ".join(components)
435
 
436
  # Ultra cleaning and optimization
437
+ prompt = re.sub(r'\s+', ' ', prompt)
438
+ prompt = re.sub(r',\s*,+', ',', prompt)
439
+ prompt = re.sub(r'\s*,\s*', ', ', prompt)
440
+ prompt = prompt.replace(" ,", ",")
441
 
442
+ if prompt:
443
+ prompt = prompt[0].upper() + prompt[1:]
444
 
445
+ return prompt
446
 
447
+ def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
448
+ """ULTRA SUPREME INTELLIGENCE SCORING"""
449
 
450
+ score = 0
451
+ breakdown = {}
452
 
453
  # Structure Excellence (15 points)
454
+ structure_score = 0
455
+ if prompt.startswith(("A", "An")):
456
+ structure_score += 5
457
+ if prompt.count(",") >= 8:
458
+ structure_score += 10
459
+ score += structure_score
460
+ breakdown["structure"] = structure_score
461
 
462
  # Feature Detection Depth (25 points)
463
+ features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
464
+ score += features_score
465
+ breakdown["features"] = features_score
466
 
467
  # Cultural/Religious Awareness (20 points)
468
+ cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
469
+ score += cultural_score
470
+ breakdown["cultural"] = cultural_score
471
 
472
  # Emotional Intelligence (15 points)
473
+ emotion_score = 0
474
+ if ultra_analysis["emotional_state"]["primary_emotion"]:
475
+ emotion_score += 10
476
+ if ultra_analysis["emotional_state"]["emotion_confidence"] > 1:
477
+ emotion_score += 5
478
+ score += emotion_score
479
  breakdown["emotional"] = emotion_score
480
 
481
  # Technical Sophistication (15 points)
482
+ tech_score = 0
483
+ if "Phase One" in prompt or "Hasselblad" in prompt:
484
+ tech_score += 5
485
+ if any(aperture in prompt for aperture in ["f/1.4", "f/2.8", "f/4"]):
486
+ tech_score += 5
487
+ if any(lens in prompt for lens in ["85mm", "90mm", "80mm"]):
488
+ tech_score += 5
489
+ score += tech_score
490
+ breakdown["technical"] = tech_score
491
 
492
  # Environmental Context (10 points)
493
+ env_score = 0
494
+ if ultra_analysis["environmental"]["setting_type"]:
495
+ env_score += 5
496
+ if ultra_analysis["environmental"]["lighting_analysis"]:
497
+ env_score += 5
498
+ score += env_score
499
+ breakdown["environmental"] = env_score
500
+
501
+ return min(score, 100), breakdown
502
 
503
 
504
  class UltraSupremeOptimizer:
505
+ def __init__(self):
506
+ self.interrogator = None
507
+ self.analyzer = UltraSupremeAnalyzer()
508
+ self.usage_count = 0
509
+ self.device = DEVICE
510
+ self.is_initialized = False
511
 
512
+ def initialize_model(self):
513
+ if self.is_initialized:
514
+ return True
515
+
516
+ try:
517
+ config = Config(
518
+ clip_model_name="ViT-L-14/openai",
519
+ download_cache=True,
520
+ chunk_size=2048,
521
+ quiet=True,
522
+ device=self.device
523
+ )
524
 
525
+ self.interrogator = Interrogator(config)
526
+ self.is_initialized = True
527
 
528
+ if self.device == "cpu":
529
+ gc.collect()
530
+ else:
531
+ torch.cuda.empty_cache()
532
 
533
+ return True
534
 
535
+ except Exception as e:
536
+ logger.error(f"Initialization error: {e}")
537
+ return False
538
 
539
+ def optimize_image(self, image):
540
+ if image is None:
541
+ return None
542
 
543
+ if isinstance(image, np.ndarray):
544
+ image = Image.fromarray(image)
545
+ elif not isinstance(image, Image.Image):
546
+ image = Image.open(image)
547
 
548
+ if image.mode != 'RGB':
549
+ image = image.convert('RGB')
550
 
551
+ max_size = 768 if self.device != "cpu" else 512
552
+ if image.size[0] > max_size or image.size[1] > max_size:
553
+ image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
554
 
555
+ return image
556
 
557
  @spaces.GPU
558
  def generate_ultra_supreme_prompt(self, image):
559
  try:
560
  if not self.is_initialized:
561
+ if not self.initialize_model():
562
+ return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
563
 
564
  if image is None:
565
+ return "❌ Please upload an image.", "No image provided.", 0, {}
566
 
567
  self.usage_count += 1
568
 
569
  image = self.optimize_image(image)
570
  if image is None:
571
+ return "❌ Image processing failed.", "Invalid image format.", 0, {}
572
 
573
  start_time = datetime.now()
574
 
 
595
 
596
  # Memory cleanup
597
  if self.device == "cpu":
598
+ gc.collect()
599
  else:
600
  torch.cuda.empty_cache()
601
 
602
  # ULTRA COMPREHENSIVE ANALYSIS REPORT
603
+ gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
604
 
605
  # Format detected elements
606
+ features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
607
+ cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
608
+ clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
609
 
610
+ analysis_info = f"""**πŸš€ ULTRA SUPREME ANALYSIS COMPLETE**
611
+ **Processing:** {gpu_status} β€’ {duration:.1f}s β€’ Triple CLIP Ultra Intelligence
612
+ **Ultra Score:** {score}/100 β€’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
613
+ **Generation:** #{self.usage_count}
614
+ **🧠 ULTRA DEEP DETECTION:**
615
+ - **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
616
+ - **Cultural Context:** {cultural}
617
+ - **Facial Features:** {features}
618
+ - **Accessories:** {clothing}
619
+ - **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
620
+ - **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
621
+ - **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
622
+ **πŸ“Š CLIP ANALYSIS SOURCES:**
623
+ - **Fast:** {clip_fast[:50]}...
624
+ - **Classic:** {clip_classic[:50]}...
625
+ - **Best:** {clip_best[:50]}...
626
+ **⚑ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
627
 
628
+ return optimized_prompt, analysis_info, score, breakdown
629
 
630
+ except Exception as e:
631
+ logger.error(f"Ultra supreme generation error: {e}")
632
+ return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
633
 
634
  # Initialize the optimizer
635
+ optimizer = UltraSupremeOptimizer()
636
 
637
+ def process_ultra_supreme_analysis(image):
638
+ """Ultra supreme analysis wrapper"""
639
+ try:
640
+ prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
641
 
642
  # Ultra enhanced score display
643
+ if score >= 95:
644
+ color = "#059669"
645
+ grade = "LEGENDARY"
646
+ elif score >= 90:
647
+ color = "#10b981"
648
+ grade = "EXCELLENT"
649
+ elif score >= 80:
650
+ color = "#22c55e"
651
+ grade = "VERY GOOD"
652
+ elif score >= 70:
653
+ color = "#f59e0b"
654
+ grade = "GOOD"
655
+ elif score >= 60:
656
+ color = "#f97316"
657
+ grade = "FAIR"
658
+ else:
659
+ color = "#ef4444"
660
+ grade = "NEEDS WORK"
661
 
662
+ score_html = f'''
663
+ <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
664
+ <div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
665
+ <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade}</div>
666
+ <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
667
+ </div>
668
+ '''
669
+
670
+ return prompt, info, score_html
671
+
672
+ except Exception as e:
673
+ logger.error(f"Ultra supreme wrapper error: {e}")
674
+ return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
675
 
676
+ def clear_outputs():
677
+ gc.collect()
678
+ if torch.cuda.is_available():
679
+ torch.cuda.empty_cache()
680
+ return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
681
 
682
+ def create_interface():
683
+ css = """
684
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
685
 
686
+ .gradio-container {
687
+ max-width: 1600px !important;
688
+ margin: 0 auto !important;
689
+ font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
690
+ background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
691
+ }
692
 
693
+ .main-header {
694
+ text-align: center;
695
+ padding: 3rem 0 4rem 0;
696
+ background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
697
+ color: white;
698
+ margin: -2rem -2rem 3rem -2rem;
699
+ border-radius: 0 0 32px 32px;
700
+ box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
701
+ position: relative;
702
+ overflow: hidden;
703
+ }
704
 
705
+ .main-header::before {
706
+ content: '';
707
+ position: absolute;
708
+ top: 0;
709
+ left: 0;
710
+ right: 0;
711
+ bottom: 0;
712
+ background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
713
+ z-index: 1;
714
+ }
715
 
716
+ .main-title {
717
+ font-size: 4rem !important;
718
+ font-weight: 900 !important;
719
+ margin: 0 0 1rem 0 !important;
720
+ letter-spacing: -0.05em !important;
721
+ background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
722
+ -webkit-background-clip: text;
723
+ -webkit-text-fill-color: transparent;
724
+ background-clip: text;
725
+ position: relative;
726
+ z-index: 2;
727
+ }
728
 
729
+ .subtitle {
730
+ font-size: 1.5rem !important;
731
+ font-weight: 500 !important;
732
+ opacity: 0.95 !important;
733
+ margin: 0 !important;
734
+ position: relative;
735
+ z-index: 2;
736
+ }
737
 
738
+ .prompt-output {
739
+ font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
740
+ font-size: 15px !important;
741
+ line-height: 1.8 !important;
742
+ background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
743
+ border: 2px solid #e2e8f0 !important;
744
+ border-radius: 20px !important;
745
+ padding: 2.5rem !important;
746
+ box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
747
+ transition: all 0.3s ease !important;
748
+ }
749
 
750
+ .prompt-output:hover {
751
+ box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
752
+ transform: translateY(-2px) !important;
753
+ }
754
+ """
755
 
756
+ with gr.Blocks(
757
+ theme=gr.themes.Soft(),
758
+ title="πŸš€ Ultra Supreme Flux Optimizer",
759
+ css=css
760
+ ) as interface:
761
+
762
+ gr.HTML("""
763
+ <div class="main-header">
764
+ <div class="main-title">πŸš€ ULTRA SUPREME FLUX OPTIMIZER</div>
765
+ <div class="subtitle">Maximum Absolute Intelligence β€’ Triple CLIP Analysis β€’ Zero Compromise β€’ Research Supremacy</div>
766
+ </div>
767
+ """)
768
+
769
+ with gr.Row():
770
+ with gr.Column(scale=1):
771
+ gr.Markdown("## 🧠 Ultra Supreme Analysis Engine")
772
 
773
+ image_input = gr.Image(
774
+ label="Upload image for MAXIMUM intelligence analysis",
775
+ type="pil",
776
+ height=500
777
+ )
778
 
779
+ analyze_btn = gr.Button(
780
+ "πŸš€ ULTRA SUPREME ANALYSIS",
781
+ variant="primary",
782
+ size="lg"
783
+ )
784
 
785
+ gr.Markdown("""
786
  ### πŸ”¬ Maximum Absolute Intelligence
787
 
788
+ **πŸš€ Triple CLIP Interrogation:**
789
+ β€’ Fast analysis for broad contextual mapping
790
+ β€’ Classic analysis for detailed feature extraction
791
+ β€’ Best analysis for maximum depth intelligence
792
 
793
+ **🧠 Ultra Deep Feature Extraction:**
794
+ β€’ Micro-age detection with confidence scoring
795
+ β€’ Cultural/religious context with semantic analysis
796
+ β€’ Facial micro-features and expression mapping
797
+ β€’ Emotional state and micro-expression detection
798
+ β€’ Environmental lighting and atmospheric analysis
799
+ β€’ Body language and pose interpretation
800
+ β€’ Technical photography optimization
801
 
802
+ **⚑ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
803
+ """)
804
 
805
+ with gr.Column(scale=1):
806
+ gr.Markdown("## ⚑ Ultra Supreme Result")
807
 
808
+ prompt_output = gr.Textbox(
809
+ label="πŸš€ Ultra Supreme Optimized Flux Prompt",
810
+ placeholder="Upload an image to witness absolute maximum intelligence analysis...",
811
+ lines=12,
812
+ max_lines=20,
813
+ elem_classes=["prompt-output"],
814
+ show_copy_button=True
815
+ )
816
 
817
+ score_output = gr.HTML(
818
+ value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
819
+ )
820
 
821
+ info_output = gr.Markdown(value="")
822
 
823
+ clear_btn = gr.Button("πŸ—‘οΈ Clear Ultra Analysis", size="sm")
824
 
825
  # Event handlers
826
+ analyze_btn.click(
827
+ fn=process_ultra_supreme_analysis,
828
+ inputs=[image_input],
829
+ outputs=[prompt_output, info_output, score_output]
830
+ )
831
+
832
+ clear_btn.click(
833
+ fn=clear_outputs,
834
+ outputs=[prompt_output, info_output, score_output]
835
+ )
836
+
837
+ gr.Markdown("""
838
+ ---
839
  ### πŸ† Ultra Supreme Research Foundation
840
 
841
+ This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
842
+ ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
843
+ understanding and applies research-validated Flux rules with supreme intelligence.
844
 
845
+ **πŸ”¬ Pariente AI Research Laboratory** β€’ **πŸš€ Ultra Supreme Intelligence Engine**
846
+ """)
847
 
848
+ return interface
849
 
850
  # Launch the application
851
+ if __name__ == "__main__":
852
+ demo = create_interface()
853
+ demo.launch(
854
+ server_name="0.0.0.0",
855
+ server_port=7860,
856
+ share=True,
857
+ show_error=True
858
+ )