Phramer_AI / app.py
Malaji71's picture
Update app.py
b3f99d4 verified
raw
history blame
17.6 kB
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re
# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
DEVICE = get_device()
class FluxRulesEngine:
"""
Flux prompt optimization based on Pariente AI research
Implements structured prompt generation following validated rules
"""
def __init__(self):
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
self.articles = ["a", "an", "the"]
self.quality_adjectives = [
"majestic", "pristine", "sleek", "elegant", "dramatic",
"cinematic", "professional", "stunning", "refined"
]
self.lighting_types = [
"golden hour", "studio lighting", "dramatic lighting",
"ambient lighting", "natural light", "soft lighting",
"rim lighting", "volumetric lighting"
]
self.technical_specs = [
"Shot on Phase One", "f/2.8 aperture", "50mm lens",
"85mm lens", "35mm lens", "professional photography",
"medium format", "high resolution"
]
self.materials = [
"metallic", "glass", "chrome", "leather", "fabric",
"wood", "concrete", "steel", "ceramic"
]
def extract_subject(self, base_prompt):
"""Extract main subject from CLIP analysis"""
words = base_prompt.lower().split()
# Common subjects to identify
subjects = [
"car", "vehicle", "automobile", "person", "man", "woman",
"building", "house", "landscape", "mountain", "tree",
"flower", "animal", "dog", "cat", "bird"
]
for word in words:
if word in subjects:
return word
# Fallback to first noun-like word
return words[0] if words else "subject"
def detect_setting(self, base_prompt):
"""Detect environmental context"""
prompt_lower = base_prompt.lower()
settings = {
"studio": ["studio", "backdrop", "seamless"],
"outdoor": ["outdoor", "outside", "landscape", "nature"],
"urban": ["city", "street", "urban", "building"],
"coastal": ["beach", "ocean", "coast", "sea"],
"indoor": ["room", "interior", "inside", "home"]
}
for setting, keywords in settings.items():
if any(keyword in prompt_lower for keyword in keywords):
return setting
return "neutral environment"
def optimize_for_flux(self, base_prompt, style_preference="professional"):
"""Apply Flux-specific optimization rules"""
# Clean forbidden elements
cleaned_prompt = base_prompt
for forbidden in self.forbidden_elements:
cleaned_prompt = cleaned_prompt.replace(forbidden, "")
# Extract key elements
subject = self.extract_subject(base_prompt)
setting = self.detect_setting(base_prompt)
# Build structured prompt
components = []
# 1. Article
article = "A" if subject[0] not in 'aeiou' else "An"
components.append(article)
# 2. Descriptive adjectives (max 2-3)
adjectives = ["elegant", "professional"] # Fixed instead of random
components.extend(adjectives)
# 3. Main subject
components.append(subject)
# 4. Verb/Action (gerund form)
if "person" in subject or "man" in subject or "woman" in subject:
action = "standing"
else:
action = "positioned"
components.append(action)
# 5. Context/Location
context_map = {
"studio": "in a professional studio setting",
"outdoor": "in a natural outdoor environment",
"urban": "on an urban street",
"coastal": "along a dramatic coastline",
"indoor": "in an elegant interior space"
}
components.append(context_map.get(setting, "in a carefully composed scene"))
# 6. Environmental details
components.append("with subtle atmospheric effects")
# 7. Materials/Textures (if applicable)
if any(mat in base_prompt.lower() for mat in ["car", "vehicle", "metal"]):
components.append("featuring metallic surfaces")
# 8. Lighting effects
components.append("illuminated by golden hour lighting")
# 9. Technical specs
components.append("Shot on Phase One, f/2.8 aperture")
# 10. Quality/Style
if style_preference == "cinematic":
quality = "cinematic composition"
elif style_preference == "commercial":
quality = "commercial photography quality"
else:
quality = "professional photography"
components.append(quality)
# Join components with proper punctuation
prompt = ", ".join(components)
# Capitalize first letter
prompt = prompt[0].upper() + prompt[1:]
return prompt
def get_optimization_score(self, prompt):
"""Calculate optimization score for Flux compatibility"""
score = 0
# Structure check (order compliance)
if prompt.startswith(("A", "An", "The")):
score += 15
# Technical specs presence
if any(spec in prompt for spec in self.technical_specs):
score += 20
# Lighting specification
if any(light in prompt.lower() for light in self.lighting_types):
score += 15
# No forbidden elements
if not any(forbidden in prompt for forbidden in self.forbidden_elements):
score += 15
# Proper punctuation and structure
if "," in prompt:
score += 10
# Length optimization
word_count = len(prompt.split())
if 15 <= word_count <= 35:
score += 25
elif 10 <= word_count <= 45:
score += 15
return min(score, 100)
class FluxPromptOptimizer:
def __init__(self):
self.interrogator = None
self.flux_engine = FluxRulesEngine()
self.usage_count = 0
self.device = DEVICE
self.is_initialized = False
def initialize_model(self):
if self.is_initialized:
return True
try:
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image):
if image is None:
return None
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
if image.mode != 'RGB':
image = image.convert('RGB')
# Optimize image size for processing
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
@spaces.GPU
def generate_optimized_prompt(self, image, style_preference="professional", mode="best"):
try:
if not self.is_initialized:
if not self.initialize_model():
return "❌ Model initialization failed.", "Please refresh and try again.", 0
if image is None:
return "❌ Please upload an image.", "No image provided.", 0
self.usage_count += 1
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0
start_time = datetime.now()
# Get base analysis from CLIP
try:
if mode == "fast":
base_prompt = self.interrogator.interrogate_fast(image)
elif mode == "classic":
base_prompt = self.interrogator.interrogate_classic(image)
else:
base_prompt = self.interrogator.interrogate(image)
except Exception as e:
base_prompt = self.interrogator.interrogate_fast(image)
# Apply Flux-specific optimization
optimized_prompt = self.flux_engine.optimize_for_flux(base_prompt, style_preference)
# Calculate optimization score
score = self.flux_engine.get_optimization_score(optimized_prompt)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# Generate analysis info
gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
analysis_info = f"""**Analysis Complete**
**Processing:** {gpu_status} β€’ {duration:.1f}s β€’ {mode.title()} mode
**Style:** {style_preference.title()} photography
**Optimization Score:** {score}/100
**Generation:** #{self.usage_count}
**Base Analysis:** {base_prompt[:100]}...
**Enhancement:** Applied Flux-specific structure and terminology"""
return optimized_prompt, analysis_info, score
except Exception as e:
logger.error(f"Generation error: {e}")
return f"❌ Error: {str(e)}", "Please try with a different image.", 0
optimizer = FluxPromptOptimizer()
def process_image_wrapper(image, style_preference, mode):
"""Simple wrapper without progress callbacks"""
try:
prompt, info, score = optimizer.generate_optimized_prompt(image, style_preference, mode)
# Create score HTML
color = "#22c55e" if score >= 80 else "#f59e0b" if score >= 60 else "#ef4444"
score_html = f'''
<div style="text-align: center; padding: 1rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 2px solid {color}; border-radius: 12px; margin: 1rem 0;">
<div style="font-size: 2rem; font-weight: 700; color: {color}; margin: 0;">{score}</div>
<div style="font-size: 0.875rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em;">Optimization Score</div>
</div>
'''
return prompt, info, score_html
except Exception as e:
logger.error(f"Wrapper error: {e}")
return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
def clear_outputs():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Optimization Score</div></div>'
def create_interface():
# Professional CSS with elegant typography
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
.main-header {
text-align: center;
padding: 2rem 0 3rem 0;
background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
color: white;
margin: -2rem -2rem 2rem -2rem;
border-radius: 0 0 24px 24px;
}
.main-title {
font-size: 2.5rem !important;
font-weight: 700 !important;
margin: 0 0 0.5rem 0 !important;
letter-spacing: -0.025em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.subtitle {
font-size: 1.125rem !important;
font-weight: 400 !important;
opacity: 0.8 !important;
margin: 0 !important;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 14px !important;
line-height: 1.6 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
padding: 1.5rem !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1) !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Flux Prompt Optimizer",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">⚑ Flux Prompt Optimizer</div>
<div class="subtitle">Advanced prompt generation for Flux models β€’ Research-based optimization</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## πŸ“· Image Input")
image_input = gr.Image(
label="Upload your image",
type="pil",
height=320
)
gr.Markdown("## βš™οΈ Settings")
style_selector = gr.Dropdown(
choices=["professional", "cinematic", "commercial", "artistic"],
value="professional",
label="Photography Style"
)
mode_selector = gr.Dropdown(
choices=["fast", "classic", "best"],
value="best",
label="Analysis Mode"
)
optimize_btn = gr.Button(
"πŸš€ Generate Optimized Prompt",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("## πŸ“ Optimized Prompt")
prompt_output = gr.Textbox(
label="Generated Prompt",
placeholder="Your optimized Flux prompt will appear here...",
lines=6,
max_lines=10,
elem_classes=["prompt-output"],
show_copy_button=True
)
score_output = gr.HTML(
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Optimization Score</div></div>'
)
info_output = gr.Markdown(value="")
with gr.Row():
clear_btn = gr.Button("πŸ—‘οΈ Clear", size="sm")
gr.Markdown("""
---
### πŸ”¬ Research Foundation
Flux Prompt Optimizer implements validated prompt engineering research for optimal Flux model performance.
The optimization engine applies structured composition rules, technical terminology, and quality markers
specifically calibrated for Flux architecture.
**Developed by Pariente AI** β€’ Advanced AI Research Laboratory
""")
# Event handlers - FIXED
optimize_btn.click(
fn=process_image_wrapper,
inputs=[image_input, style_selector, mode_selector],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_outputs,
outputs=[prompt_output, info_output, score_output]
)
return interface
if __name__ == "__main__":
logger.info("πŸš€ Starting Flux Prompt Optimizer")
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)