Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Model management for Phramer AI | |
By Pariente AI, for MIA TV Series | |
BAGEL 7B integration with professional photography knowledge enhancement | |
""" | |
import spaces | |
import logging | |
import tempfile | |
import os | |
import re | |
from typing import Optional, Dict, Any, Tuple | |
from PIL import Image | |
from gradio_client import Client, handle_file | |
from config import get_device_config, PROFESSIONAL_PHOTOGRAPHY_CONFIG | |
from utils import clean_memory, safe_execute | |
from professional_photography import ( | |
ProfessionalPhotoAnalyzer, | |
enhance_flux_prompt_with_professional_knowledge, | |
professional_analyzer | |
) | |
logger = logging.getLogger(__name__) | |
class BaseImageAnalyzer: | |
"""Base class for image analysis models""" | |
def __init__(self): | |
self.is_initialized = False | |
self.device_config = get_device_config() | |
def initialize(self) -> bool: | |
"""Initialize the model""" | |
raise NotImplementedError | |
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]: | |
"""Analyze image and return description""" | |
raise NotImplementedError | |
def cleanup(self) -> None: | |
"""Clean up model resources""" | |
clean_memory() | |
class BagelAPIAnalyzer(BaseImageAnalyzer): | |
"""BAGEL 7B model with professional photography knowledge integration""" | |
def __init__(self): | |
super().__init__() | |
self.client = None | |
self.space_url = "Malaji71/Bagel-7B-Demo" | |
self.api_endpoint = "/image_understanding" | |
self.hf_token = os.getenv("HF_TOKEN") | |
self.professional_analyzer = professional_analyzer | |
def initialize(self) -> bool: | |
"""Initialize BAGEL API client with authentication""" | |
if self.is_initialized: | |
return True | |
try: | |
logger.info("Initializing BAGEL API client for Phramer AI...") | |
# Initialize client with token if available | |
if self.hf_token: | |
logger.info("Using HF token for enhanced API access") | |
self.client = Client(self.space_url, hf_token=self.hf_token) | |
else: | |
logger.info("Using public API access") | |
self.client = Client(self.space_url) | |
self.is_initialized = True | |
logger.info("BAGEL API client initialized successfully") | |
return True | |
except Exception as e: | |
logger.error(f"BAGEL API client initialization failed: {e}") | |
if self.hf_token: | |
logger.info("Retrying without token...") | |
try: | |
self.client = Client(self.space_url) | |
self.is_initialized = True | |
logger.info("BAGEL API client initialized (fallback mode)") | |
return True | |
except Exception as e2: | |
logger.error(f"Fallback initialization failed: {e2}") | |
return False | |
def _create_professional_enhanced_prompt(self, analysis_type: str = "multimodal") -> str: | |
"""Create professionally enhanced prompt for BAGEL analysis""" | |
if analysis_type == "cinematic": | |
return """Analyze this image for professional cinematic prompt generation. You are an expert cinematographer with 30+ years of cinema experience. Provide exactly two sections: | |
1. DESCRIPTION: Create a detailed, flowing paragraph describing the image for cinematic reproduction: | |
- Scene composition and visual storytelling elements | |
- Lighting quality, direction, and dramatic mood | |
- Color palette, tonal relationships, and atmospheric elements | |
- Subject positioning, environmental context, and framing | |
- Cinematic qualities: film grain, depth of field, visual style | |
- Technical photographic elements that enhance realism | |
2. CAMERA_SETUP: Recommend professional cinema/photography equipment based on scene analysis: | |
- Camera body: Choose from Canon EOS R5/R6, Sony A7R/A1, Leica M11, ARRI Alexa, RED cameras | |
- Lens: Specific focal length and aperture (e.g., "85mm f/1.4", "35mm anamorphic f/2.8") | |
- Technical settings: Aperture consideration for depth of field and story mood | |
- Lighting setup: Professional lighting rationale (key, fill, rim, practical lights) | |
- Shooting style: Documentary, portrait, landscape, architectural, or cinematic approach | |
Apply professional cinematography principles: rule of thirds, leading lines, depth layering, lighting direction for mood, and technical excellence. Focus on creating prompts optimized for photorealistic, cinema-quality generation.""" | |
elif analysis_type == "flux_optimized": | |
return """Analyze this image for FLUX prompt generation with professional cinematography expertise. You have 30+ years of cinema experience. Provide exactly two sections: | |
1. DESCRIPTION: Professional analysis for photorealistic reproduction: | |
- Image type and photographic classification | |
- Subject matter with precise visual details | |
- Lighting analysis: quality, direction, color temperature, shadows | |
- Composition elements: framing, balance, visual flow | |
- Color relationships and tonal values | |
- Artistic style and photographic technique employed | |
- Technical qualities that contribute to image impact | |
2. CAMERA_SETUP: Expert equipment recommendation: | |
- Professional camera body suited for scene type | |
- Specific lens with focal length and maximum aperture | |
- Recommended shooting aperture for optimal depth of field | |
- Technical considerations: ISO, lighting setup, focus technique | |
- Professional shooting approach and methodology | |
Integrate advanced cinematography principles: exposure triangle mastery, lighting ratios, compositional rules, focus techniques, and professional equipment knowledge. Output should be optimized for FLUX's photorealistic capabilities.""" | |
else: # multimodal analysis | |
return """Analyze this image with professional cinematography expertise for multi-platform prompt generation. You are a master cinematographer with extensive technical and artistic knowledge from 30+ years in cinema. Provide exactly two sections: | |
1. DESCRIPTION: Expert visual analysis for prompt generation: | |
- Comprehensive scene description with photographic insight | |
- Subject matter, composition, and visual hierarchy | |
- Lighting analysis: quality, direction, mood, technical setup | |
- Color palette, contrast, and tonal relationships | |
- Artistic elements: style, mood, atmosphere, visual impact | |
- Technical photographic qualities and execution | |
2. CAMERA_SETUP: Professional equipment and technique recommendation: | |
- Camera system recommendation based on scene requirements | |
- Lens selection with specific focal length and aperture range | |
- Technical shooting parameters and considerations | |
- Lighting setup and methodology for scene recreation | |
- Professional approach: shooting style and technical execution | |
Apply master-level cinematography knowledge: advanced composition techniques, professional lighting principles, camera system expertise, lens characteristics, and technical excellence. Create content suitable for multiple generative engines (Flux, Midjourney, etc.) with emphasis on photorealistic quality.""" | |
def _extract_professional_camera_setup(self, description: str) -> Optional[str]: | |
"""Extract and enhance camera setup with professional photography knowledge""" | |
try: | |
camera_setup = None | |
# Extract BAGEL's camera recommendation | |
if "CAMERA_SETUP:" in description: | |
parts = description.split("CAMERA_SETUP:") | |
if len(parts) > 1: | |
camera_section = parts[1].strip() | |
camera_text = camera_section.split('\n')[0].strip() | |
if len(camera_text) > 20: | |
camera_setup = self._parse_professional_camera_recommendation(camera_text) | |
elif "2. CAMERA_SETUP" in description: | |
parts = description.split("2. CAMERA_SETUP") | |
if len(parts) > 1: | |
camera_section = parts[1].strip() | |
camera_text = camera_section.split('\n')[0].strip() | |
if len(camera_text) > 20: | |
camera_setup = self._parse_professional_camera_recommendation(camera_text) | |
# Fallback: look for camera recommendations in text | |
if not camera_setup: | |
camera_setup = self._find_professional_camera_recommendation(description) | |
return camera_setup | |
except Exception as e: | |
logger.warning(f"Failed to extract professional camera setup: {e}") | |
return None | |
def _parse_professional_camera_recommendation(self, camera_text: str) -> Optional[str]: | |
"""Parse camera recommendation with professional photography enhancement""" | |
try: | |
# Clean and extract with professional patterns | |
camera_text = re.sub(r'^(Based on.*?recommend|I would recommend|For this.*?recommend)\s*', '', camera_text, flags=re.IGNORECASE) | |
# Professional camera patterns (more comprehensive) | |
camera_patterns = [ | |
r'(Canon EOS R[^\s,]*(?:\s+[^\s,]*)?)', | |
r'(Sony A[^\s,]*(?:\s+[^\s,]*)?)', | |
r'(Leica [^\s,]+)', | |
r'(Hasselblad [^\s,]+)', | |
r'(Phase One [^\s,]+)', | |
r'(Fujifilm [^\s,]+)', | |
r'(ARRI [^\s,]+)', | |
r'(RED [^\s,]+)', | |
r'(Nikon [^\s,]+)' | |
] | |
camera_model = None | |
for pattern in camera_patterns: | |
match = re.search(pattern, camera_text, re.IGNORECASE) | |
if match: | |
camera_model = match.group(1).strip() | |
break | |
# Professional lens patterns (enhanced) | |
lens_patterns = [ | |
r'(\d+mm\s*f/[\d.]+(?:\s*(?:lens|anamorphic|telephoto|wide))?)', | |
r'(\d+-\d+mm\s*f/[\d.]+(?:\s*lens)?)', | |
r'(with\s+(?:a\s+)?(\d+mm[^,.]*))', | |
r'(paired with.*?(\d+mm[^,.]*))', | |
r'(\d+mm[^,]*anamorphic[^,]*)', | |
r'(\d+mm[^,]*telephoto[^,]*)' | |
] | |
lens_info = None | |
for pattern in lens_patterns: | |
match = re.search(pattern, camera_text, re.IGNORECASE) | |
if match: | |
lens_info = match.group(1).strip() | |
lens_info = re.sub(r'^(with\s+(?:a\s+)?|paired with\s+)', '', lens_info, flags=re.IGNORECASE) | |
break | |
# Build professional recommendation | |
parts = [] | |
if camera_model: | |
parts.append(camera_model) | |
if lens_info: | |
parts.append(lens_info) | |
if parts: | |
result = ', '.join(parts) | |
logger.info(f"Professional camera setup extracted: {result}") | |
return result | |
return None | |
except Exception as e: | |
logger.warning(f"Failed to parse professional camera recommendation: {e}") | |
return None | |
def _find_professional_camera_recommendation(self, text: str) -> Optional[str]: | |
"""Find professional camera recommendations with enhanced detection""" | |
try: | |
sentences = re.split(r'[.!?]', text) | |
for sentence in sentences: | |
# Professional camera brands and technical terms | |
if any(brand in sentence.lower() for brand in ['canon', 'sony', 'leica', 'hasselblad', 'phase one', 'fujifilm', 'arri', 'red']): | |
if any(term in sentence.lower() for term in ['recommend', 'suggest', 'would use', 'camera', 'lens', 'shot on']): | |
parsed = self._parse_professional_camera_recommendation(sentence.strip()) | |
if parsed: | |
return parsed | |
return None | |
except Exception as e: | |
logger.warning(f"Failed to find professional camera recommendation: {e}") | |
return None | |
def _enhance_description_with_professional_context(self, description: str, image: Image.Image) -> str: | |
"""Enhance BAGEL description with professional cinematography context""" | |
try: | |
if not PROFESSIONAL_PHOTOGRAPHY_CONFIG.get("enable_expert_analysis", True): | |
return description | |
# Get professional cinematography context without being invasive | |
enhanced_context = self.professional_analyzer.generate_enhanced_context(description) | |
# Extract key professional insights | |
scene_type = enhanced_context.get("scene_type", "general") | |
technical_context = enhanced_context.get("technical_context", "") | |
professional_insight = enhanced_context.get("professional_insight", "") | |
# Enhance description subtly with professional terminology | |
enhanced_description = description | |
# Add professional context if not already present | |
if technical_context and len(technical_context) > 20: | |
# Only add if it doesn't duplicate existing information | |
if not any(term in description.lower() for term in ["shot on", "professional", "camera"]): | |
enhanced_description += f"\n\nProfessional Context: {technical_context}" | |
logger.info(f"Enhanced description with cinematography context for {scene_type} scene") | |
return enhanced_description | |
except Exception as e: | |
logger.warning(f"Cinematography context enhancement failed: {e}") | |
return description | |
def _save_temp_image(self, image: Image.Image) -> str: | |
"""Save image to temporary file for API call""" | |
try: | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png') | |
temp_path = temp_file.name | |
temp_file.close() | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
image.save(temp_path, 'PNG') | |
return temp_path | |
except Exception as e: | |
logger.error(f"Failed to save temporary image: {e}") | |
return None | |
def _cleanup_temp_file(self, file_path: str): | |
"""Clean up temporary file""" | |
try: | |
if file_path and os.path.exists(file_path): | |
os.unlink(file_path) | |
except Exception as e: | |
logger.warning(f"Failed to cleanup temp file: {e}") | |
def analyze_image(self, image: Image.Image, prompt: str = None) -> Tuple[str, Dict[str, Any]]: | |
"""Analyze image using BAGEL API with professional cinematography enhancement""" | |
if not self.is_initialized: | |
success = self.initialize() | |
if not success: | |
return "BAGEL API not available", {"error": "API initialization failed"} | |
temp_path = None | |
metadata = { | |
"model": "BAGEL-7B-Professional", | |
"device": "api", | |
"confidence": 0.9, | |
"api_endpoint": self.api_endpoint, | |
"space_url": self.space_url, | |
"prompt_used": prompt, | |
"has_camera_suggestion": False, | |
"professional_enhancement": True | |
} | |
try: | |
# Use professional enhanced prompt if none provided | |
if prompt is None: | |
prompt = self._create_professional_enhanced_prompt("multimodal") | |
# Save image to temporary file | |
temp_path = self._save_temp_image(image) | |
if not temp_path: | |
return "Image processing failed", {"error": "Could not save image"} | |
logger.info("Calling BAGEL API with professional cinematography context...") | |
# Call BAGEL API with enhanced prompt | |
result = self.client.predict( | |
image=handle_file(temp_path), | |
prompt=prompt, | |
show_thinking=False, | |
do_sample=False, | |
text_temperature=0.2, | |
max_new_tokens=512, | |
api_name=self.api_endpoint | |
) | |
# Extract and process response | |
if isinstance(result, tuple) and len(result) >= 2: | |
description = result[1] if result[1] else result[0] | |
else: | |
description = str(result) | |
if isinstance(description, str) and description.strip(): | |
description = description.strip() | |
# Extract professional camera setup | |
camera_setup = self._extract_professional_camera_setup(description) | |
if camera_setup: | |
metadata["camera_setup"] = camera_setup | |
metadata["has_camera_suggestion"] = True | |
logger.info(f"Professional camera setup extracted: {camera_setup}") | |
else: | |
metadata["has_camera_suggestion"] = False | |
logger.info("No camera setup found, will use professional fallback") | |
# Enhance description with cinematography context | |
if PROFESSIONAL_PHOTOGRAPHY_CONFIG.get("knowledge_base_integration", True): | |
description = self._enhance_description_with_professional_context(description, image) | |
metadata["cinematography_context_applied"] = True | |
else: | |
description = "Professional image analysis completed successfully" | |
metadata["has_camera_suggestion"] = False | |
# Update metadata | |
metadata.update({ | |
"response_length": len(description), | |
"analysis_type": "professional_enhanced" | |
}) | |
logger.info(f"BAGEL Professional analysis complete: {len(description)} chars, Camera: {metadata.get('has_camera_suggestion', False)}") | |
return description, metadata | |
except Exception as e: | |
logger.error(f"BAGEL Professional analysis failed: {e}") | |
return "Professional analysis failed", {"error": str(e), "model": "BAGEL-7B-Professional"} | |
finally: | |
if temp_path: | |
self._cleanup_temp_file(temp_path) | |
def analyze_for_cinematic_prompt(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]: | |
"""Analyze image specifically for cinematic/MIA TV Series prompt generation""" | |
cinematic_prompt = self._create_professional_enhanced_prompt("cinematic") | |
return self.analyze_image(image, cinematic_prompt) | |
def analyze_for_flux_with_professional_context(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]: | |
"""Analyze image for FLUX with enhanced professional cinematography context""" | |
flux_prompt = self._create_professional_enhanced_prompt("flux_optimized") | |
return self.analyze_image(image, flux_prompt) | |
def analyze_for_multiengine_prompt(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]: | |
"""Analyze image for multi-engine compatibility (Flux, Midjourney, etc.)""" | |
multiengine_prompt = self._create_professional_enhanced_prompt("multimodal") | |
return self.analyze_image(image, multiengine_prompt) | |
def cleanup(self) -> None: | |
"""Clean up API client resources""" | |
try: | |
if hasattr(self, 'client'): | |
self.client = None | |
super().cleanup() | |
logger.info("BAGEL Professional API resources cleaned up") | |
except Exception as e: | |
logger.warning(f"BAGEL Professional API cleanup warning: {e}") | |
class FallbackAnalyzer(BaseImageAnalyzer): | |
"""Enhanced fallback analyzer with basic professional cinematography principles""" | |
def __init__(self): | |
super().__init__() | |
self.professional_analyzer = professional_analyzer | |
def initialize(self) -> bool: | |
"""Fallback with cinematography enhancement is always ready""" | |
self.is_initialized = True | |
return True | |
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]: | |
"""Provide enhanced image description with cinematography context""" | |
try: | |
width, height = image.size | |
mode = image.mode | |
aspect_ratio = width / height | |
# Enhanced scene detection | |
if aspect_ratio > 1.5: | |
orientation = "landscape" | |
scene_type = "landscape" | |
camera_suggestion = "Phase One XT with 24-70mm f/4 lens, landscape photography" | |
elif aspect_ratio < 0.75: | |
orientation = "portrait" | |
scene_type = "portrait_studio" | |
camera_suggestion = "Canon EOS R5 with 85mm f/1.4 lens, portrait photography" | |
else: | |
orientation = "square" | |
scene_type = "general" | |
camera_suggestion = "Canon EOS R6 with 50mm f/1.8 lens, standard photography" | |
# Generate professional description | |
description = f"A {orientation} format professional photograph with balanced composition and technical excellence. The image demonstrates clear visual hierarchy and professional execution, suitable for high-quality reproduction across multiple generative platforms. Recommended professional setup: {camera_suggestion}, with careful attention to exposure, lighting, and artistic composition." | |
# Add cinematography context if available | |
try: | |
if PROFESSIONAL_PHOTOGRAPHY_CONFIG.get("enable_expert_analysis", True): | |
enhanced_context = self.professional_analyzer.generate_enhanced_context(description) | |
technical_context = enhanced_context.get("technical_context", "") | |
if technical_context: | |
description += f" Cinematography context: {technical_context}" | |
except Exception as e: | |
logger.warning(f"Cinematography context enhancement failed in fallback: {e}") | |
metadata = { | |
"model": "Professional-Fallback", | |
"device": "cpu", | |
"confidence": 0.7, | |
"image_size": f"{width}x{height}", | |
"color_mode": mode, | |
"orientation": orientation, | |
"aspect_ratio": round(aspect_ratio, 2), | |
"scene_type": scene_type, | |
"has_camera_suggestion": True, | |
"camera_setup": camera_suggestion, | |
"professional_enhancement": True | |
} | |
return description, metadata | |
except Exception as e: | |
logger.error(f"Professional fallback analysis failed: {e}") | |
return "Professional image suitable for detailed analysis and multi-engine prompt generation", { | |
"error": str(e), | |
"model": "Professional-Fallback" | |
} | |
class ModelManager: | |
"""Enhanced manager for handling image analysis models with professional cinematography integration""" | |
def __init__(self, preferred_model: str = "bagel-professional"): | |
self.preferred_model = preferred_model | |
self.analyzers = {} | |
self.current_analyzer = None | |
def get_analyzer(self, model_name: str = None) -> Optional[BaseImageAnalyzer]: | |
"""Get or create analyzer for specified model""" | |
model_name = model_name or self.preferred_model | |
if model_name not in self.analyzers: | |
if model_name in ["bagel-api", "bagel-professional"]: | |
self.analyzers[model_name] = BagelAPIAnalyzer() | |
elif model_name == "fallback": | |
self.analyzers[model_name] = FallbackAnalyzer() | |
else: | |
logger.warning(f"Unknown model: {model_name}, using professional fallback") | |
model_name = "fallback" | |
self.analyzers[model_name] = FallbackAnalyzer() | |
return self.analyzers[model_name] | |
def analyze_image(self, image: Image.Image, model_name: str = None, analysis_type: str = "multiengine") -> Tuple[str, Dict[str, Any]]: | |
"""Analyze image with professional cinematography enhancement""" | |
analyzer = self.get_analyzer(model_name) | |
if analyzer is None: | |
return "No analyzer available", {"error": "Model not found"} | |
# Choose analysis method based on type and analyzer capabilities | |
if analysis_type == "cinematic" and hasattr(analyzer, 'analyze_for_cinematic_prompt'): | |
success, result = safe_execute(analyzer.analyze_for_cinematic_prompt, image) | |
elif analysis_type == "flux" and hasattr(analyzer, 'analyze_for_flux_with_professional_context'): | |
success, result = safe_execute(analyzer.analyze_for_flux_with_professional_context, image) | |
elif analysis_type == "multiengine" and hasattr(analyzer, 'analyze_for_multiengine_prompt'): | |
success, result = safe_execute(analyzer.analyze_for_multiengine_prompt, image) | |
else: | |
success, result = safe_execute(analyzer.analyze_image, image) | |
if success and result[1].get("error") is None: | |
return result | |
else: | |
# Enhanced fallback with cinematography context | |
logger.warning(f"Primary model failed, using cinematography-enhanced fallback: {result}") | |
fallback_analyzer = self.get_analyzer("fallback") | |
fallback_success, fallback_result = safe_execute(fallback_analyzer.analyze_image, image) | |
if fallback_success: | |
return fallback_result | |
else: | |
return "All cinematography analyzers failed", {"error": "Complete analysis failure"} | |
def cleanup_all(self) -> None: | |
"""Clean up all model resources""" | |
for analyzer in self.analyzers.values(): | |
analyzer.cleanup() | |
self.analyzers.clear() | |
clean_memory() | |
logger.info("All cinematography analyzers cleaned up") | |
# Global model manager instance with cinematography enhancement | |
model_manager = ModelManager(preferred_model="bagel-professional") | |
def analyze_image(image: Image.Image, model_name: str = None, analysis_type: str = "multiengine") -> Tuple[str, Dict[str, Any]]: | |
""" | |
Enhanced convenience function for professional cinematography analysis | |
Args: | |
image: PIL Image to analyze | |
model_name: Optional model name ("bagel-professional", "fallback") | |
analysis_type: Type of analysis ("multiengine", "cinematic", "flux") | |
Returns: | |
Tuple of (description, metadata) with professional cinematography enhancement | |
""" | |
return model_manager.analyze_image(image, model_name, analysis_type) | |
# Export main components | |
__all__ = [ | |
"BaseImageAnalyzer", | |
"BagelAPIAnalyzer", | |
"FallbackAnalyzer", | |
"ModelManager", | |
"model_manager", | |
"analyze_image" | |
] |