Phramer_AI / utils.py
Malaji71's picture
Update utils.py
7db5a7a verified
raw
history blame
23.8 kB
"""
Utility functions for Phramer AI
By Pariente AI, for MIA TV Series
Enhanced with professional cinematography knowledge and intelligent token economy
"""
import re
import logging
import gc
from typing import Optional, Tuple, Dict, Any, List
from PIL import Image
import torch
import numpy as np
from config import PROCESSING_CONFIG, FLUX_RULES, PROFESSIONAL_PHOTOGRAPHY_CONFIG
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def setup_logging(level: str = "INFO") -> None:
"""Setup logging configuration"""
logging.basicConfig(
level=getattr(logging, level.upper()),
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
def optimize_image(image: Any) -> Optional[Image.Image]:
"""
Optimize image for processing
Args:
image: Input image (PIL, numpy array, or file path)
Returns:
Optimized PIL Image or None if failed
"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
elif not isinstance(image, Image.Image):
logger.error(f"Unsupported image type: {type(image)}")
return None
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large
max_size = PROCESSING_CONFIG["max_image_size"]
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
logger.info(f"Image resized to {image.size}")
return image
except Exception as e:
logger.error(f"Image optimization failed: {e}")
return None
def validate_image(image: Any) -> bool:
"""
Validate if image is processable
Args:
image: Input image to validate
Returns:
True if valid, False otherwise
"""
if image is None:
return False
try:
optimized = optimize_image(image)
return optimized is not None
except Exception:
return False
def clean_memory() -> None:
"""Clean up memory and GPU cache"""
try:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
logger.debug("Memory cleaned")
except Exception as e:
logger.warning(f"Memory cleanup failed: {e}")
def detect_scene_type_from_analysis(analysis_metadata: Dict[str, Any]) -> str:
"""Detect scene type from BAGEL analysis metadata"""
try:
# Check if BAGEL provided scene detection
if "scene_type" in analysis_metadata:
return analysis_metadata["scene_type"]
# Check camera setup for scene hints
camera_setup = analysis_metadata.get("camera_setup", "").lower()
if any(term in camera_setup for term in ["portrait", "85mm", "135mm"]):
return "portrait"
elif any(term in camera_setup for term in ["landscape", "wide", "24mm", "phase one"]):
return "landscape"
elif any(term in camera_setup for term in ["street", "35mm", "documentary", "leica"]):
return "street"
elif any(term in camera_setup for term in ["cinema", "arri", "red", "anamorphic"]):
return "cinematic"
elif any(term in camera_setup for term in ["architecture", "building", "tilt"]):
return "architectural"
return "default"
except Exception as e:
logger.warning(f"Scene type detection failed: {e}")
return "default"
def apply_flux_rules(prompt: str, analysis_metadata: Optional[Dict[str, Any]] = None) -> str:
"""
Apply enhanced prompt optimization with cinematography knowledge and intelligent token economy
Args:
prompt: Raw prompt text from BAGEL analysis
analysis_metadata: Enhanced metadata with cinematography suggestions
Returns:
Optimized prompt with professional cinematography terms and efficient token usage
"""
if not prompt or not isinstance(prompt, str):
return ""
try:
# Step 1: Extract and clean the core description
core_description = _extract_clean_description(prompt)
if not core_description:
return "Professional photograph with technical excellence"
# Step 2: Get camera configuration
camera_setup = _get_camera_setup(analysis_metadata, core_description)
# Step 3: Get essential style keywords
style_keywords = _get_essential_keywords(core_description, camera_setup, analysis_metadata)
# Step 4: Build final optimized prompt
final_prompt = _build_optimized_prompt(core_description, camera_setup, style_keywords)
logger.info(f"Prompt optimized: {len(prompt)} β†’ {len(final_prompt)} chars")
return final_prompt
except Exception as e:
logger.error(f"Prompt optimization failed: {e}")
return _create_fallback_prompt(prompt)
def _extract_clean_description(prompt: str) -> str:
"""Extract and clean the core description from BAGEL output"""
try:
# Remove CAMERA_SETUP section
if "CAMERA_SETUP:" in prompt:
description = prompt.split("CAMERA_SETUP:")[0].strip()
elif "2. CAMERA_SETUP" in prompt:
description = prompt.split("2. CAMERA_SETUP")[0].strip()
else:
description = prompt
# Remove section headers
description = re.sub(r'^(DESCRIPTION:|1\.\s*DESCRIPTION:)\s*', '', description, flags=re.IGNORECASE)
# Remove verbose introduction phrases
remove_patterns = [
r'^This image (?:features|shows|depicts|presents|captures)',
r'^The image (?:features|shows|depicts|presents|captures)',
r'^This (?:photograph|picture|scene) (?:features|shows|depicts)',
r'^(?:In this image,?|Looking at this image,?)',
r'(?:possibly|apparently|seemingly|appears to be|seems to be)',
]
for pattern in remove_patterns:
description = re.sub(pattern, '', description, flags=re.IGNORECASE)
# Convert to concise, direct language
description = _convert_to_direct_language(description)
# Clean up formatting
description = re.sub(r'\s+', ' ', description).strip()
# Limit length for efficiency
if len(description) > 200:
sentences = re.split(r'[.!?]', description)
description = sentences[0] if sentences else description[:200]
return description.strip()
except Exception as e:
logger.warning(f"Description extraction failed: {e}")
return prompt[:100] if prompt else ""
def _convert_to_direct_language(text: str) -> str:
"""Convert verbose descriptive text to direct, concise language"""
try:
# Direct conversions for common verbose phrases
conversions = [
# Subject identification
(r'a (?:person|individual|figure|man|woman) (?:who is|that is)', r'person'),
(r' (?:who is|that is) (?:wearing|dressed in)', r' wearing'),
(r' (?:who appears to be|that appears to be)', r''),
# Location simplification
(r'(?:what appears to be|what seems to be) (?:a|an)', r''),
(r'in (?:what looks like|what appears to be) (?:a|an)', r'in'),
(r'(?:standing|sitting|positioned) in (?:the middle of|the center of)', r'in'),
# Action simplification
(r'(?:is|are) (?:currently|presently) (?:engaged in|performing)', r''),
(r'(?:can be seen|is visible|are visible)', r''),
# Background simplification
(r'(?:In the background|Behind (?:him|her|them)),? (?:there (?:is|are)|we can see)', r'Background:'),
(r'The background (?:features|shows|contains)', r'Background:'),
# Remove filler words
(r'\b(?:quite|rather|somewhat|fairly|very|extremely)\b', r''),
(r'\b(?:overall|generally|typically|usually)\b', r''),
]
result = text
for pattern, replacement in conversions:
result = re.sub(pattern, replacement, result, flags=re.IGNORECASE)
# Clean up extra spaces and punctuation
result = re.sub(r'\s+', ' ', result)
result = re.sub(r'\s*,\s*,+', ',', result)
result = re.sub(r'^\s*,\s*', '', result)
return result.strip()
except Exception as e:
logger.warning(f"Language conversion failed: {e}")
return text
def _get_camera_setup(analysis_metadata: Optional[Dict[str, Any]], description: str) -> str:
"""Get camera setup configuration"""
try:
# Check if BAGEL provided camera setup
if analysis_metadata and analysis_metadata.get("has_camera_suggestion"):
camera_setup = analysis_metadata.get("camera_setup", "")
if camera_setup and len(camera_setup) > 10:
return _format_camera_setup(camera_setup)
# Detect scene type and provide appropriate camera setup
scene_type = _detect_scene_from_content(description)
return _get_scene_camera_setup(scene_type)
except Exception as e:
logger.warning(f"Camera setup detection failed: {e}")
return "shot on professional camera"
def _format_camera_setup(raw_setup: str) -> str:
"""Format camera setup into clean, concise format"""
try:
# Extract camera model
camera_patterns = [
r'(Canon EOS R\d+)',
r'(Sony A\d+[^\s,]*)',
r'(Leica [^\s,]+)',
r'(Phase One [^\s,]+)',
r'(Hasselblad [^\s,]+)',
r'(ARRI [^\s,]+)',
r'(RED [^\s,]+)'
]
camera = None
for pattern in camera_patterns:
match = re.search(pattern, raw_setup, re.IGNORECASE)
if match:
camera = match.group(1)
break
# Extract lens info
lens_pattern = r'(\d+mm[^,]*f/[\d.]+[^,]*)'
lens_match = re.search(lens_pattern, raw_setup, re.IGNORECASE)
lens = lens_match.group(1) if lens_match else None
# Extract ISO
iso_pattern = r'(ISO \d+)'
iso_match = re.search(iso_pattern, raw_setup, re.IGNORECASE)
iso = iso_match.group(1) if iso_match else None
# Build clean setup
parts = []
if camera:
parts.append(camera)
if lens:
parts.append(lens)
if iso:
parts.append(iso)
if parts:
return f"shot on {', '.join(parts)}"
else:
return "professional photography"
except Exception as e:
logger.warning(f"Camera setup formatting failed: {e}")
return "professional photography"
def _detect_scene_from_content(description: str) -> str:
"""Detect scene type from description content"""
description_lower = description.lower()
# Scene detection patterns
if any(term in description_lower for term in ["portrait", "person", "man", "woman", "face"]):
return "portrait"
elif any(term in description_lower for term in ["landscape", "mountain", "horizon", "nature", "outdoor"]):
return "landscape"
elif any(term in description_lower for term in ["street", "urban", "city", "building", "crowd"]):
return "street"
elif any(term in description_lower for term in ["architecture", "building", "structure", "interior"]):
return "architecture"
else:
return "general"
def _get_scene_camera_setup(scene_type: str) -> str:
"""Get camera setup based on scene type"""
setups = {
"portrait": "shot on Canon EOS R5, 85mm f/1.4 lens, ISO 200",
"landscape": "shot on Phase One XT, 24-70mm f/4 lens, ISO 100",
"street": "shot on Leica M11, 35mm f/1.4 lens, ISO 800",
"architecture": "shot on Canon EOS R5, 24-70mm f/2.8 lens, ISO 100",
"general": "shot on Canon EOS R6, 50mm f/1.8 lens, ISO 400"
}
return setups.get(scene_type, setups["general"])
def _get_essential_keywords(description: str, camera_setup: str, analysis_metadata: Optional[Dict[str, Any]]) -> List[str]:
"""Get essential style keywords without redundancy"""
try:
keywords = []
description_lower = description.lower()
# Only add depth of field if not already mentioned
if "depth" not in description_lower and "bokeh" not in description_lower:
if any(term in camera_setup for term in ["f/1.4", "f/2.8", "85mm"]):
keywords.append("shallow depth of field")
# Add professional photography only if no specific camera mentioned
if "shot on" not in camera_setup:
keywords.append("professional photography")
# Scene-specific keywords
if "portrait" in description_lower and "studio lighting" not in description_lower:
keywords.append("professional portrait")
# Technical quality (only if needed)
if len(keywords) < 2:
keywords.append("high quality")
return keywords[:3] # Limit to 3 essential keywords
except Exception as e:
logger.warning(f"Keyword extraction failed: {e}")
return ["professional photography"]
def _build_optimized_prompt(description: str, camera_setup: str, keywords: List[str]) -> str:
"""Build final optimized prompt with proper structure"""
try:
# Structure: Description + Technical + Style
parts = []
# Core description (clean and concise)
if description:
parts.append(description)
# Technical setup
if camera_setup:
parts.append(camera_setup)
# Essential keywords
if keywords:
parts.extend(keywords)
# Join with consistent separator
result = ", ".join(parts)
# Final cleanup
result = re.sub(r'\s*,\s*,+', ',', result) # Remove double commas
result = re.sub(r'\s+', ' ', result) # Clean spaces
result = result.strip().rstrip(',') # Remove trailing comma
# Ensure it starts with capital letter
if result:
result = result[0].upper() + result[1:] if len(result) > 1 else result.upper()
return result
except Exception as e:
logger.error(f"Prompt building failed: {e}")
return "Professional photograph"
def _create_fallback_prompt(original_prompt: str) -> str:
"""Create fallback prompt when optimization fails"""
try:
# Extract first meaningful sentence
sentences = re.split(r'[.!?]', original_prompt)
if sentences:
clean_sentence = sentences[0].strip()
# Remove verbose starters
clean_sentence = re.sub(r'^(This image shows|The image depicts|This photograph)', '', clean_sentence, flags=re.IGNORECASE)
clean_sentence = clean_sentence.strip()
if len(clean_sentence) > 20:
return f"{clean_sentence}, professional photography"
return "Professional photograph with technical excellence"
except Exception:
return "Professional photograph"
def calculate_prompt_score(prompt: str, analysis_data: Optional[Dict[str, Any]] = None) -> Tuple[int, Dict[str, int]]:
"""
Calculate enhanced quality score with professional cinematography criteria
Args:
prompt: The prompt to score
analysis_data: Enhanced analysis data with cinematography context
Returns:
Tuple of (total_score, breakdown_dict)
"""
if not prompt:
return 0, {"prompt_quality": 0, "technical_details": 0, "professional_cinematography": 0, "multi_engine_optimization": 0}
breakdown = {}
# Enhanced Prompt Quality (0-25 points)
length_score = min(15, len(prompt) // 10) # Reward appropriate length
detail_score = min(10, len(prompt.split(',')) * 2) # Reward structured detail
breakdown["prompt_quality"] = int(length_score + detail_score)
# Technical Details with Cinematography Focus (0-25 points)
tech_score = 0
# Cinema equipment (higher scores for professional gear)
cinema_equipment = ['Canon EOS R', 'Sony A1', 'Leica', 'Hasselblad', 'Phase One', 'ARRI', 'RED']
for equipment in cinema_equipment:
if equipment.lower() in prompt.lower():
tech_score += 8
break
# Lens specifications
if re.search(r'\d+mm.*f/[\d.]+', prompt):
tech_score += 6
# ISO settings
if re.search(r'ISO \d+', prompt):
tech_score += 4
# Professional terminology
tech_keywords = ['shot on', 'lens', 'depth of field', 'bokeh']
tech_score += sum(3 for keyword in tech_keywords if keyword in prompt.lower())
breakdown["technical_details"] = min(25, tech_score)
# Professional Cinematography (0-25 points)
cinema_score = 0
# Professional lighting techniques
lighting_terms = ['professional lighting', 'studio lighting', 'natural lighting']
cinema_score += sum(4 for term in lighting_terms if term in prompt.lower())
# Composition techniques
composition_terms = ['composition', 'depth of field', 'bokeh', 'shallow depth']
cinema_score += sum(3 for term in composition_terms if term in prompt.lower())
# Professional context bonus
if analysis_data and analysis_data.get("has_camera_suggestion"):
cinema_score += 6
breakdown["professional_cinematography"] = min(25, cinema_score)
# Multi-Engine Optimization (0-25 points)
optimization_score = 0
# Check for technical specifications
if re.search(r'(?:Canon|Sony|Leica|Phase One)', prompt):
optimization_score += 10
# Complete technical specs
if re.search(r'\d+mm.*f/[\d.]+.*ISO \d+', prompt):
optimization_score += 8
# Professional terminology
pro_terms = ['professional', 'shot on', 'high quality']
optimization_score += sum(2 for term in pro_terms if term in prompt.lower())
# Length efficiency bonus (reward conciseness)
word_count = len(prompt.split())
if 30 <= word_count <= 60: # Optimal range
optimization_score += 5
elif word_count <= 30:
optimization_score += 3
breakdown["multi_engine_optimization"] = min(25, optimization_score)
# Calculate total
total_score = sum(breakdown.values())
return total_score, breakdown
def calculate_professional_enhanced_score(prompt: str, analysis_data: Optional[Dict[str, Any]] = None) -> Tuple[int, Dict[str, int]]:
"""
Enhanced scoring with professional cinematography criteria
Args:
prompt: The prompt to score
analysis_data: Analysis data with cinematography context
Returns:
Tuple of (total_score, breakdown_dict)
"""
return calculate_prompt_score(prompt, analysis_data)
def get_score_grade(score: int) -> Dict[str, str]:
"""
Get grade information for a score
Args:
score: Numeric score
Returns:
Dictionary with grade and color information
"""
from config import SCORING_CONFIG
for threshold, grade_info in sorted(SCORING_CONFIG["grade_thresholds"].items(), reverse=True):
if score >= threshold:
return grade_info
# Default to lowest grade
return SCORING_CONFIG["grade_thresholds"][0]
def format_analysis_report(analysis_data: Dict[str, Any], processing_time: float) -> str:
"""
Format analysis data into a readable report with cinematography insights
Args:
analysis_data: Analysis results with cinematography context
processing_time: Time taken for processing
Returns:
Formatted markdown report
"""
model_used = analysis_data.get("model", "Unknown")
prompt_length = len(analysis_data.get("prompt", ""))
has_cinema_context = analysis_data.get("cinematography_context_applied", False)
scene_type = analysis_data.get("scene_type", "general")
report = f"""**🎬 PHRAMER AI ANALYSIS COMPLETE**
**Model:** {model_used} β€’ **Time:** {processing_time:.1f}s β€’ **Length:** {prompt_length} chars
**πŸ“Š CINEMATOGRAPHY ANALYSIS:**
**Scene Type:** {scene_type.replace('_', ' ').title()}
**Professional Context:** {'βœ… Applied' if has_cinema_context else '❌ Not Applied'}
**🎯 OPTIMIZATIONS APPLIED:**
βœ… Clean description extraction
βœ… Professional camera configuration
βœ… Essential keyword optimization
βœ… Token economy optimization
βœ… Multi-engine compatibility
βœ… Redundancy elimination
**⚑ Powered by Pariente AI for MIA TV Series**"""
return report
def safe_execute(func, *args, **kwargs) -> Tuple[bool, Any]:
"""
Safely execute a function with error handling
Args:
func: Function to execute
*args: Function arguments
**kwargs: Function keyword arguments
Returns:
Tuple of (success: bool, result: Any)
"""
try:
result = func(*args, **kwargs)
return True, result
except Exception as e:
logger.error(f"Safe execution failed for {func.__name__}: {e}")
return False, str(e)
def truncate_text(text: str, max_length: int = 100) -> str:
"""
Truncate text to specified length with ellipsis
Args:
text: Text to truncate
max_length: Maximum length
Returns:
Truncated text
"""
if not text or len(text) <= max_length:
return text
return text[:max_length-3] + "..."
def enhance_prompt_with_cinematography_knowledge(original_prompt: str, scene_type: str = "default") -> str:
"""
Enhance prompt with professional cinematography knowledge
Args:
original_prompt: Base prompt text
scene_type: Detected scene type
Returns:
Enhanced prompt with cinematography context
"""
try:
# Import here to avoid circular imports
from professional_photography import enhance_flux_prompt_with_professional_knowledge
# Apply professional cinematography enhancement
enhanced = enhance_flux_prompt_with_professional_knowledge(original_prompt)
logger.info(f"Enhanced prompt with cinematography knowledge for {scene_type} scene")
return enhanced
except ImportError:
logger.warning("Professional photography module not available")
return original_prompt
except Exception as e:
logger.warning(f"Cinematography enhancement failed: {e}")
return original_prompt
# Export main functions
__all__ = [
"setup_logging",
"optimize_image",
"validate_image",
"clean_memory",
"apply_flux_rules",
"calculate_prompt_score",
"calculate_professional_enhanced_score",
"get_score_grade",
"format_analysis_report",
"safe_execute",
"truncate_text",
"enhance_prompt_with_cinematography_knowledge",
"detect_scene_type_from_analysis"
]