Phramer_AI / optimizer.py
Malaji71's picture
Update optimizer.py
7ab7e54 verified
raw
history blame
12.9 kB
"""
Ultra Supreme Optimizer - Main optimization engine for image analysis
VERSIÓN MEJORADA - Usa el prompt completo de CLIP Interrogator
"""
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
import spaces
import gc
import logging
from datetime import datetime
from typing import Tuple, Dict, Any, Optional
import torch
import numpy as np
from PIL import Image
from clip_interrogator import Config, Interrogator
from analyzer import UltraSupremeAnalyzer
logger = logging.getLogger(__name__)
class UltraSupremeOptimizer:
"""Main optimizer class for ultra supreme image analysis"""
def __init__(self):
self.interrogator: Optional[Interrogator] = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = self._get_device()
self.is_initialized = False
@staticmethod
def _get_device() -> str:
"""Determine the best available device for computation"""
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def initialize_model(self) -> bool:
"""Initialize the CLIP interrogator model"""
if self.is_initialized:
return True
try:
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
# Clean up memory after initialization
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image: Any) -> Optional[Image.Image]:
"""Optimize image for processing"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Image optimization error: {e}")
return None
def apply_flux_rules(self, base_prompt: str) -> str:
"""Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
# Limpiar el prompt de elementos no deseados
cleanup_patterns = [
r',\s*trending on artstation',
r',\s*trending on [^,]+',
r',\s*\d+k\s*',
r',\s*\d+k resolution',
r',\s*artstation',
r',\s*concept art',
r',\s*digital art',
r',\s*by greg rutkowski', # Remover artistas genéricos overused
]
cleaned_prompt = base_prompt
for pattern in cleanup_patterns:
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
# Detectar el tipo de imagen para añadir configuración de cámara apropiada
camera_config = ""
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
else:
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
# Añadir mejoras de iluminación si no están presentes
if 'lighting' not in cleaned_prompt.lower():
if 'dramatic' in cleaned_prompt.lower():
cleaned_prompt += ", dramatic cinematic lighting"
elif 'portrait' in cleaned_prompt.lower():
cleaned_prompt += ", professional studio lighting with subtle rim light"
else:
cleaned_prompt += ", masterful natural lighting"
# Construir el prompt final
final_prompt = cleaned_prompt + camera_config
# Asegurar que empiece con mayúscula
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
# Limpiar espacios y comas duplicadas
final_prompt = re.sub(r'\s+', ' ', final_prompt)
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
return final_prompt
@spaces.GPU
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
"""
Generate ultra supreme prompt from image usando el pipeline completo
Returns:
Tuple of (prompt, analysis_info, score, breakdown)
"""
try:
# Initialize model if needed
if not self.is_initialized:
if not self.initialize_model():
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
# Validate input
if image is None:
return "❌ Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
# Optimize image
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
# NUEVO PIPELINE: Usar CLIP Interrogator completo
logger.info("ULTRA SUPREME ANALYSIS - Usando pipeline completo de CLIP Interrogator")
# 1. Obtener el prompt COMPLETO de CLIP Interrogator (no solo análisis)
# Este incluye descripción + artistas + estilos + mediums
full_prompt = self.interrogator.interrogate(image)
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
# 2. También obtener los análisis individuales para el reporte
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
logger.info(f"Análisis Fast: {clip_fast}")
logger.info(f"Análisis Classic: {clip_classic}")
# 3. Aplicar reglas de Flux al prompt completo
import re
optimized_prompt = self.apply_flux_rules(full_prompt)
# 4. Crear análisis para el reporte (simplificado)
analysis_summary = {
"base_prompt": full_prompt,
"clip_fast": clip_fast,
"clip_classic": clip_classic,
"optimized": optimized_prompt,
"detected_style": self._detect_style(full_prompt),
"detected_subject": self._detect_subject(full_prompt)
}
# 5. Calcular score basado en la riqueza del prompt
score = self._calculate_score(optimized_prompt, full_prompt)
breakdown = {
"base_quality": min(len(full_prompt) // 10, 25),
"technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
"lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
"composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
}
score = sum(breakdown.values())
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# Generate analysis report
analysis_info = self._generate_analysis_report(
analysis_summary, score, breakdown, duration
)
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}")
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
def _detect_style(self, prompt: str) -> str:
"""Detecta el estilo principal del prompt"""
styles = {
"portrait": ["portrait", "person", "face", "headshot"],
"landscape": ["landscape", "mountain", "nature", "scenery"],
"street": ["street", "urban", "city"],
"artistic": ["artistic", "abstract", "conceptual"],
"dramatic": ["dramatic", "cinematic", "moody"]
}
for style_name, keywords in styles.items():
if any(keyword in prompt.lower() for keyword in keywords):
return style_name
return "general"
def _detect_subject(self, prompt: str) -> str:
"""Detecta el sujeto principal del prompt"""
# Tomar las primeras palabras significativas
words = prompt.split(',')[0].split()
if len(words) > 3:
return ' '.join(words[:4])
return prompt.split(',')[0]
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
"""Calcula el score basado en la calidad del prompt"""
score = 0
# Base score por longitud y riqueza
score += min(len(base_prompt) // 10, 25)
# Technical enhancement
if "Shot on" in optimized_prompt:
score += 25
# Lighting quality
if "lighting" in optimized_prompt.lower():
score += 25
# Professional quality
if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
score += 25
return min(score, 100)
def _generate_analysis_report(self, analysis: Dict[str, Any],
score: int, breakdown: Dict[str, int],
duration: float) -> str:
"""Generate detailed analysis report"""
gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
# Extraer información clave
detected_style = analysis.get("detected_style", "general").title()
detected_subject = analysis.get("detected_subject", "Unknown")
base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status}{duration:.1f}s • Full CLIP Interrogator Pipeline
**Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})
**Generation:** #{self.usage_count}
**🧠 INTELLIGENT DETECTION:**
- **Detected Style:** {detected_style}
- **Main Subject:** {detected_subject}
- **Pipeline:** CLIP Interrogator → Flux Optimization → Technical Enhancement
**📊 CLIP INTERROGATOR ANALYSIS:**
- **Base Prompt:** {base_prompt_preview}
- **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
**⚡ OPTIMIZATION APPLIED:**
- ✅ Preserved CLIP Interrogator's rich description
- ✅ Added professional camera specifications
- ✅ Enhanced lighting descriptions
- ✅ Applied Flux-specific optimizations
- ✅ Removed redundant/generic elements
**🔬 Powered by Pariente AI Research + CLIP Interrogator**"""
return analysis_info