Phramer_AI / models.py
Malaji71's picture
Create models.py
a7d8c02 verified
raw
history blame
13 kB
"""
Model management for FLUX Prompt Optimizer
Handles Florence-2 and Bagel model integration
"""
import logging
import requests
import spaces
import torch
from typing import Optional, Dict, Any, Tuple
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from config import MODEL_CONFIG, get_device_config
from utils import clean_memory, safe_execute
logger = logging.getLogger(__name__)
class BaseImageAnalyzer:
"""Base class for image analysis models"""
def __init__(self):
self.model = None
self.processor = None
self.device_config = get_device_config()
self.is_initialized = False
def initialize(self) -> bool:
"""Initialize the model"""
raise NotImplementedError
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
"""Analyze image and return description"""
raise NotImplementedError
def cleanup(self) -> None:
"""Clean up model resources"""
if self.model is not None:
del self.model
self.model = None
if self.processor is not None:
del self.processor
self.processor = None
clean_memory()
class Florence2Analyzer(BaseImageAnalyzer):
"""Florence-2 model for image analysis"""
def __init__(self):
super().__init__()
self.config = MODEL_CONFIG["florence2"]
def initialize(self) -> bool:
"""Initialize Florence-2 model"""
if self.is_initialized:
return True
try:
logger.info("Initializing Florence-2 model...")
model_id = self.config["model_id"]
# Load processor
self.processor = AutoProcessor.from_pretrained(
model_id,
trust_remote_code=self.config["trust_remote_code"]
)
# Load model
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=self.config["trust_remote_code"],
torch_dtype=self.config["torch_dtype"] if self.device_config["use_gpu"] else torch.float32
)
# Move to appropriate device
if self.device_config["use_gpu"]:
self.model = self.model.to(self.device_config["device"])
else:
self.model = self.model.to("cpu")
self.model.eval()
self.is_initialized = True
logger.info(f"Florence-2 initialized on {self.device_config['device']}")
return True
except Exception as e:
logger.error(f"Florence-2 initialization failed: {e}")
self.cleanup()
return False
@spaces.GPU(duration=60)
def _gpu_inference(self, image: Image.Image, task_prompt: str) -> str:
"""Run inference on GPU with spaces decorator"""
try:
# Move model to GPU for inference
if self.device_config["use_gpu"]:
self.model = self.model.to("cuda")
# Prepare inputs
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
# Move inputs to device
device = "cuda" if self.device_config["use_gpu"] else self.device_config["device"]
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
if self.device_config["use_gpu"]:
with torch.cuda.amp.autocast(dtype=torch.float16):
generated_ids = self.model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=self.config["max_new_tokens"],
num_beams=3,
do_sample=False
)
else:
generated_ids = self.model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=self.config["max_new_tokens"],
num_beams=3,
do_sample=False
)
# Decode response
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed = self.processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
# Extract caption
if task_prompt in parsed:
return parsed[task_prompt]
else:
return str(parsed) if parsed else ""
except Exception as e:
logger.error(f"Florence-2 GPU inference failed: {e}")
return ""
finally:
# Move model back to CPU to free GPU memory
if self.device_config["use_gpu"]:
self.model = self.model.to("cpu")
clean_memory()
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
"""Analyze image using Florence-2"""
if not self.is_initialized:
success = self.initialize()
if not success:
return "Model initialization failed", {"error": "Florence-2 not available"}
try:
# Define analysis tasks
tasks = {
"detailed": "<DETAILED_CAPTION>",
"more_detailed": "<MORE_DETAILED_CAPTION>",
"caption": "<CAPTION>"
}
results = {}
# Run analysis for each task
for task_name, task_prompt in tasks.items():
if self.device_config["use_gpu"]:
result = self._gpu_inference(image, task_prompt)
else:
result = self._cpu_inference(image, task_prompt)
results[task_name] = result
# Choose best result
if results["more_detailed"]:
main_description = results["more_detailed"]
elif results["detailed"]:
main_description = results["detailed"]
else:
main_description = results["caption"] or "A photograph"
# Prepare metadata
metadata = {
"model": "Florence-2",
"device": self.device_config["device"],
"all_results": results,
"confidence": 0.85 # Florence-2 generally reliable
}
logger.info(f"Florence-2 analysis complete: {len(main_description)} chars")
return main_description, metadata
except Exception as e:
logger.error(f"Florence-2 analysis failed: {e}")
return "Analysis failed", {"error": str(e)}
def _cpu_inference(self, image: Image.Image, task_prompt: str) -> str:
"""Run inference on CPU"""
try:
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
with torch.no_grad():
generated_ids = self.model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=self.config["max_new_tokens"],
num_beams=2, # Reduced for CPU
do_sample=False
)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed = self.processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
if task_prompt in parsed:
return parsed[task_prompt]
else:
return str(parsed) if parsed else ""
except Exception as e:
logger.error(f"Florence-2 CPU inference failed: {e}")
return ""
class BagelAnalyzer(BaseImageAnalyzer):
"""Bagel-7B model analyzer via API"""
def __init__(self):
super().__init__()
self.config = MODEL_CONFIG["bagel"]
self.session = requests.Session()
def initialize(self) -> bool:
"""Initialize Bagel analyzer (API-based)"""
try:
# Test API connectivity
test_response = self.session.get(
self.config["api_url"],
timeout=self.config["timeout"]
)
if test_response.status_code == 200:
self.is_initialized = True
logger.info("Bagel API connection established")
return True
else:
logger.error(f"Bagel API not accessible: {test_response.status_code}")
return False
except Exception as e:
logger.error(f"Bagel initialization failed: {e}")
return False
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
"""Analyze image using Bagel-7B API"""
if not self.is_initialized:
success = self.initialize()
if not success:
return "Bagel API not available", {"error": "API connection failed"}
try:
# Convert image to base64 or prepare for API call
# Note: This is a placeholder - actual implementation would depend on Bagel API format
# For now, return a placeholder response
# In real implementation, you would:
# 1. Convert image to required format
# 2. Make API call to Bagel endpoint
# 3. Parse response
description = "Detailed image analysis via Bagel-7B (API implementation needed)"
metadata = {
"model": "Bagel-7B",
"method": "API",
"confidence": 0.8
}
logger.info("Bagel analysis complete (placeholder)")
return description, metadata
except Exception as e:
logger.error(f"Bagel analysis failed: {e}")
return "Analysis failed", {"error": str(e)}
class ModelManager:
"""Manager for handling multiple analysis models"""
def __init__(self, preferred_model: str = None):
self.preferred_model = preferred_model or MODEL_CONFIG["primary_model"]
self.analyzers = {}
self.current_analyzer = None
def get_analyzer(self, model_name: str = None) -> Optional[BaseImageAnalyzer]:
"""Get or create analyzer for specified model"""
model_name = model_name or self.preferred_model
if model_name not in self.analyzers:
if model_name == "florence2":
self.analyzers[model_name] = Florence2Analyzer()
elif model_name == "bagel":
self.analyzers[model_name] = BagelAnalyzer()
else:
logger.error(f"Unknown model: {model_name}")
return None
return self.analyzers[model_name]
def analyze_image(self, image: Image.Image, model_name: str = None) -> Tuple[str, Dict[str, Any]]:
"""Analyze image with specified or preferred model"""
analyzer = self.get_analyzer(model_name)
if analyzer is None:
return "No analyzer available", {"error": "Model not found"}
success, result = safe_execute(analyzer.analyze_image, image)
if success:
return result
else:
return "Analysis failed", {"error": result}
def cleanup_all(self) -> None:
"""Clean up all model resources"""
for analyzer in self.analyzers.values():
analyzer.cleanup()
self.analyzers.clear()
clean_memory()
# Global model manager instance
model_manager = ModelManager()
def analyze_image(image: Image.Image, model_name: str = None) -> Tuple[str, Dict[str, Any]]:
"""
Convenience function for image analysis
Args:
image: PIL Image to analyze
model_name: Optional model name ("florence2" or "bagel")
Returns:
Tuple of (description, metadata)
"""
return model_manager.analyze_image(image, model_name)
# Export main components
__all__ = [
"BaseImageAnalyzer",
"Florence2Analyzer",
"BagelAnalyzer",
"ModelManager",
"model_manager",
"analyze_image"
]