Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,977 Bytes
1227ff0 f746366 8697e16 1227ff0 f746366 1227ff0 f746366 b82d15d 1227ff0 61f8038 1227ff0 61f8038 f746366 1227ff0 61f8038 1227ff0 b65afd3 61f8038 8697e16 61f8038 8697e16 61f8038 8697e16 61f8038 8697e16 61f8038 8697e16 61f8038 8697e16 61f8038 7db5a7a 61f8038 7db5a7a 61f8038 c55ae1b 7db5a7a 61f8038 7db5a7a 61f8038 7db5a7a 61f8038 b65afd3 61f8038 7db5a7a b65afd3 61f8038 b65afd3 7db5a7a 61f8038 7db5a7a 61f8038 b65afd3 61f8038 6803d3e 61f8038 8697e16 61f8038 b65afd3 6803d3e 61f8038 7db5a7a 61f8038 7db5a7a 61f8038 7db5a7a 61f8038 7db5a7a 61f8038 7db5a7a 8697e16 61f8038 7db5a7a 61f8038 8697e16 61f8038 7db5a7a b65afd3 7db5a7a b65afd3 61f8038 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 61f8038 f746366 1227ff0 f746366 b82d15d f746366 7db5a7a f746366 7db5a7a f746366 7db5a7a f746366 7db5a7a f746366 61f8038 b82d15d 1227ff0 61f8038 f746366 1227ff0 61f8038 b82d15d 61f8038 f746366 7db5a7a f746366 7db5a7a f746366 61f8038 7db5a7a f746366 7db5a7a 61f8038 7db5a7a 8697e16 61f8038 8697e16 61f8038 8697e16 61f8038 7db5a7a 61f8038 7db5a7a f746366 1227ff0 7db5a7a 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 61f8038 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 f746366 1227ff0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
"""
Utility functions for Phramer AI
By Pariente AI, for MIA TV Series
Enhanced with professional cinematography knowledge and intelligent token economy
"""
import re
import logging
import gc
from typing import Optional, Tuple, Dict, Any, List
from PIL import Image
import torch
import numpy as np
from config import PROCESSING_CONFIG, FLUX_RULES, PROFESSIONAL_PHOTOGRAPHY_CONFIG
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def setup_logging(level: str = "INFO") -> None:
"""Setup logging configuration"""
logging.basicConfig(
level=getattr(logging, level.upper()),
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
def optimize_image(image: Any) -> Optional[Image.Image]:
"""
Optimize image for processing
Args:
image: Input image (PIL, numpy array, or file path)
Returns:
Optimized PIL Image or None if failed
"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
elif not isinstance(image, Image.Image):
logger.error(f"Unsupported image type: {type(image)}")
return None
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large
max_size = PROCESSING_CONFIG["max_image_size"]
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
logger.info(f"Image resized to {image.size}")
return image
except Exception as e:
logger.error(f"Image optimization failed: {e}")
return None
def validate_image(image: Any) -> bool:
"""
Validate if image is processable
Args:
image: Input image to validate
Returns:
True if valid, False otherwise
"""
if image is None:
return False
try:
optimized = optimize_image(image)
return optimized is not None
except Exception:
return False
def clean_memory() -> None:
"""Clean up memory and GPU cache"""
try:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
logger.debug("Memory cleaned")
except Exception as e:
logger.warning(f"Memory cleanup failed: {e}")
def detect_scene_type_from_analysis(analysis_metadata: Dict[str, Any]) -> str:
"""Detect scene type from BAGEL analysis metadata"""
try:
# Check if BAGEL provided scene detection
if "scene_type" in analysis_metadata:
return analysis_metadata["scene_type"]
# Check camera setup for scene hints
camera_setup = analysis_metadata.get("camera_setup", "").lower()
if any(term in camera_setup for term in ["portrait", "85mm", "135mm"]):
return "portrait"
elif any(term in camera_setup for term in ["landscape", "wide", "24mm", "phase one"]):
return "landscape"
elif any(term in camera_setup for term in ["street", "35mm", "documentary", "leica"]):
return "street"
elif any(term in camera_setup for term in ["cinema", "arri", "red", "anamorphic"]):
return "cinematic"
elif any(term in camera_setup for term in ["architecture", "building", "tilt"]):
return "architectural"
return "default"
except Exception as e:
logger.warning(f"Scene type detection failed: {e}")
return "default"
def apply_flux_rules(prompt: str, analysis_metadata: Optional[Dict[str, Any]] = None) -> str:
"""
Apply enhanced prompt optimization - FORMAT ONLY, do not filter content
Let professional_photography.py do ALL the cinematographic work
Args:
prompt: Raw prompt text from BAGEL analysis (already enriched by professional_photography.py)
analysis_metadata: Enhanced metadata with cinematography suggestions
Returns:
Clean formatted prompt preserving ALL professional cinematography content
"""
if not prompt or not isinstance(prompt, str):
return ""
try:
# Step 1: Extract the rich professional description (preserve ALL content)
description = _extract_professional_description(prompt)
# Step 2: Extract camera setup if provided by BAGEL
camera_setup = _extract_camera_setup(prompt, analysis_metadata)
# Step 3: Format into clean structure (NO filtering)
formatted_prompt = _format_professional_prompt(description, camera_setup)
logger.info(f"Professional prompt formatted: {len(prompt)} β {len(formatted_prompt)} chars")
return formatted_prompt
except Exception as e:
logger.error(f"Professional prompt formatting failed: {e}")
return prompt # Return original if formatting fails
def _extract_professional_description(prompt: str) -> str:
"""
Extract the professional description - preserve ALL cinematographic content
Only clean formatting, DO NOT filter content
"""
try:
# Split sections if present
if "CAMERA_SETUP:" in prompt:
description = prompt.split("CAMERA_SETUP:")[0].strip()
elif "2. CAMERA_SETUP" in prompt:
description = prompt.split("2. CAMERA_SETUP")[0].strip()
else:
description = prompt
# Remove only section headers, preserve ALL content
description = re.sub(r'^(DESCRIPTION:|1\.\s*DESCRIPTION:)\s*', '', description, flags=re.IGNORECASE)
# Clean up only formatting issues, preserve ALL professional terminology
# Remove only redundant whitespace
description = re.sub(r'\s+', ' ', description)
description = description.strip()
# If description is too long, preserve the most important parts
# But DO NOT remove cinematographic terms or professional language
if len(description) > 300:
# Only truncate at sentence boundaries to preserve meaning
sentences = re.split(r'[.!?]+', description)
truncated = ""
for sentence in sentences:
if len(truncated + sentence) < 280:
truncated += sentence + ". "
else:
break
if truncated:
description = truncated.strip()
return description
except Exception as e:
logger.warning(f"Professional description extraction failed: {e}")
return prompt
def _extract_camera_setup(prompt: str, analysis_metadata: Optional[Dict[str, Any]]) -> str:
"""
Extract camera setup from BAGEL output or metadata
"""
try:
# First check if BAGEL provided camera setup in the prompt
camera_setup = ""
if "CAMERA_SETUP:" in prompt:
camera_section = prompt.split("CAMERA_SETUP:")[1].strip()
# Take first substantial line
lines = camera_section.split('\n')
for line in lines:
if len(line.strip()) > 20:
camera_setup = line.strip()
break
elif "2. CAMERA_SETUP" in prompt:
camera_section = prompt.split("2. CAMERA_SETUP")[1].strip()
lines = camera_section.split('\n')
for line in lines:
if len(line.strip()) > 20:
camera_setup = line.strip()
break
# If no setup in prompt, check metadata
if not camera_setup and analysis_metadata:
camera_setup = analysis_metadata.get("camera_setup", "")
# Format camera setup if found
if camera_setup:
return _format_camera_setup(camera_setup)
# Return empty if no camera setup (let the description speak for itself)
return ""
except Exception as e:
logger.warning(f"Camera setup extraction failed: {e}")
return ""
def _format_camera_setup(raw_setup: str) -> str:
"""
Format camera setup preserving ALL technical information
"""
try:
# Clean up common prefixes but preserve all technical specs
setup = re.sub(r'^(Based on.*?recommend|I would recommend|For this.*?setup)\s*', '', raw_setup, flags=re.IGNORECASE)
setup = re.sub(r'^(CAMERA_SETUP:|2\.\s*CAMERA_SETUP:?)\s*', '', setup, flags=re.IGNORECASE)
# Ensure proper formatting
if setup and not setup.lower().startswith('shot on'):
setup = f"shot on {setup}"
return setup.strip()
except Exception as e:
logger.warning(f"Camera setup formatting failed: {e}")
return raw_setup
def _format_professional_prompt(description: str, camera_setup: str) -> str:
"""
Format the final prompt preserving ALL professional cinematography content
Structure: [Professional Description] + [Camera Setup]
"""
try:
parts = []
# Add the rich professional description (preserve ALL content)
if description:
parts.append(description)
# Add camera setup if available
if camera_setup:
parts.append(camera_setup)
# Join with clean formatting
result = ", ".join(parts)
# Clean up only formatting issues
result = re.sub(r'\s*,\s*,+', ',', result) # Remove double commas
result = re.sub(r'\s+', ' ', result) # Clean multiple spaces
result = result.strip().rstrip(',') # Clean edges
# Ensure proper capitalization
if result:
result = result[0].upper() + result[1:] if len(result) > 1 else result.upper()
return result
except Exception as e:
logger.error(f"Professional prompt formatting failed: {e}")
return description if description else "Professional cinematographic photograph"
def calculate_prompt_score(prompt: str, analysis_data: Optional[Dict[str, Any]] = None) -> Tuple[int, Dict[str, int]]:
"""
Calculate enhanced quality score with professional cinematography criteria
Args:
prompt: The prompt to score
analysis_data: Enhanced analysis data with cinematography context
Returns:
Tuple of (total_score, breakdown_dict)
"""
if not prompt:
return 0, {"prompt_quality": 0, "technical_details": 0, "professional_cinematography": 0, "multi_engine_optimization": 0}
breakdown = {}
# Enhanced Prompt Quality (0-25 points)
length_score = min(15, len(prompt) // 15) # Reward appropriate length
detail_score = min(10, len(prompt.split(',')) * 1.5) # Reward structured detail
breakdown["prompt_quality"] = int(length_score + detail_score)
# Technical Details with Cinematography Focus (0-25 points)
tech_score = 0
# Cinema equipment (higher scores for professional gear)
cinema_equipment = ['Canon EOS R', 'Sony A1', 'Leica', 'Hasselblad', 'Phase One', 'ARRI', 'RED']
for equipment in cinema_equipment:
if equipment.lower() in prompt.lower():
tech_score += 8
break
# Lens specifications
if re.search(r'\d+mm.*f/[\d.]+', prompt):
tech_score += 6
# ISO settings
if re.search(r'ISO \d+', prompt):
tech_score += 4
# Professional terminology from professional_photography.py
tech_keywords = ['shot on', 'lens', 'depth of field', 'bokeh', 'composition', 'lighting']
tech_score += sum(2 for keyword in tech_keywords if keyword in prompt.lower())
breakdown["technical_details"] = min(25, tech_score)
# Professional Cinematography (0-25 points) - Check for professional_photography.py terms
cinema_score = 0
# Photographic planes
planes = ['wide shot', 'close-up', 'medium shot', 'extreme wide', 'extreme close-up', 'detail shot']
cinema_score += sum(4 for plane in planes if plane in prompt.lower())
# Camera angles
angles = ['low angle', 'high angle', 'eye level', 'dutch angle', 'elevated perspective']
cinema_score += sum(4 for angle in angles if angle in prompt.lower())
# Lighting principles
lighting = ['golden hour', 'blue hour', 'natural lighting', 'studio lighting', 'dramatic lighting', 'soft lighting']
cinema_score += sum(3 for light in lighting if light in prompt.lower())
# Composition rules
composition = ['rule of thirds', 'leading lines', 'symmetrical', 'centered', 'dynamic composition']
cinema_score += sum(3 for comp in composition if comp in prompt.lower())
# Professional context bonus
if analysis_data and analysis_data.get("has_camera_suggestion"):
cinema_score += 6
breakdown["professional_cinematography"] = min(25, cinema_score)
# Multi-Engine Optimization (0-25 points)
optimization_score = 0
# Check for complete technical specifications
if re.search(r'(?:Canon|Sony|Leica|Phase One|ARRI|RED)', prompt):
optimization_score += 10
# Complete technical specs
if re.search(r'shot on.*\d+mm.*f/[\d.]+', prompt):
optimization_score += 8
# Professional terminology density
pro_terms = ['professional', 'cinematographic', 'shot on', 'composition', 'lighting']
optimization_score += sum(1 for term in pro_terms if term in prompt.lower())
# Length efficiency (reward comprehensive but concise)
word_count = len(prompt.split())
if 40 <= word_count <= 80: # Optimal range for rich but efficient prompts
optimization_score += 5
elif 20 <= word_count <= 40:
optimization_score += 3
breakdown["multi_engine_optimization"] = min(25, optimization_score)
# Calculate total
total_score = sum(breakdown.values())
return total_score, breakdown
def calculate_professional_enhanced_score(prompt: str, analysis_data: Optional[Dict[str, Any]] = None) -> Tuple[int, Dict[str, int]]:
"""
Enhanced scoring with professional cinematography criteria
Args:
prompt: The prompt to score
analysis_data: Analysis data with cinematography context
Returns:
Tuple of (total_score, breakdown_dict)
"""
return calculate_prompt_score(prompt, analysis_data)
def get_score_grade(score: int) -> Dict[str, str]:
"""
Get grade information for a score
Args:
score: Numeric score
Returns:
Dictionary with grade and color information
"""
from config import SCORING_CONFIG
for threshold, grade_info in sorted(SCORING_CONFIG["grade_thresholds"].items(), reverse=True):
if score >= threshold:
return grade_info
# Default to lowest grade
return SCORING_CONFIG["grade_thresholds"][0]
def format_analysis_report(analysis_data: Dict[str, Any], processing_time: float) -> str:
"""
Format analysis data into a readable report with cinematography insights
Args:
analysis_data: Analysis results with cinematography context
processing_time: Time taken for processing
Returns:
Formatted markdown report
"""
model_used = analysis_data.get("model", "Unknown")
prompt_length = len(analysis_data.get("prompt", ""))
has_cinema_context = analysis_data.get("cinematography_context_applied", False)
scene_type = analysis_data.get("scene_type", "general")
report = f"""**π¬ PHRAMER AI ANALYSIS COMPLETE**
**Model:** {model_used} β’ **Time:** {processing_time:.1f}s β’ **Length:** {prompt_length} chars
**π CINEMATOGRAPHY ANALYSIS:**
**Scene Type:** {scene_type.replace('_', ' ').title()}
**Professional Context:** {'β
Applied' if has_cinema_context else 'β Not Applied'}
**π― OPTIMIZATIONS APPLIED:**
β
Complete professional cinematography analysis
β
Preserved all technical and artistic content
β
Structured professional prompt format
β
Multi-engine compatibility maintained
β
Professional photography knowledge integrated
β
Cinematographic terminology preserved
**β‘ Powered by Pariente AI for MIA TV Series**"""
return report
def safe_execute(func, *args, **kwargs) -> Tuple[bool, Any]:
"""
Safely execute a function with error handling
Args:
func: Function to execute
*args: Function arguments
**kwargs: Function keyword arguments
Returns:
Tuple of (success: bool, result: Any)
"""
try:
result = func(*args, **kwargs)
return True, result
except Exception as e:
logger.error(f"Safe execution failed for {func.__name__}: {e}")
return False, str(e)
def truncate_text(text: str, max_length: int = 100) -> str:
"""
Truncate text to specified length with ellipsis
Args:
text: Text to truncate
max_length: Maximum length
Returns:
Truncated text
"""
if not text or len(text) <= max_length:
return text
return text[:max_length-3] + "..."
def enhance_prompt_with_cinematography_knowledge(original_prompt: str, scene_type: str = "default") -> str:
"""
Enhance prompt with professional cinematography knowledge
Args:
original_prompt: Base prompt text
scene_type: Detected scene type
Returns:
Enhanced prompt with cinematography context
"""
try:
# Import here to avoid circular imports
from professional_photography import enhance_flux_prompt_with_professional_knowledge
# Apply professional cinematography enhancement
enhanced = enhance_flux_prompt_with_professional_knowledge(original_prompt)
logger.info(f"Enhanced prompt with cinematography knowledge for {scene_type} scene")
return enhanced
except ImportError:
logger.warning("Professional photography module not available")
return original_prompt
except Exception as e:
logger.warning(f"Cinematography enhancement failed: {e}")
return original_prompt
# Export main functions
__all__ = [
"setup_logging",
"optimize_image",
"validate_image",
"clean_memory",
"apply_flux_rules",
"calculate_prompt_score",
"calculate_professional_enhanced_score",
"get_score_grade",
"format_analysis_report",
"safe_execute",
"truncate_text",
"enhance_prompt_with_cinematography_knowledge",
"detect_scene_type_from_analysis"
] |