File size: 45,393 Bytes
ce98582
30c8cdc
 
 
 
cf7819d
30c8cdc
 
3f0776a
30c8cdc
3f0776a
ce98582
398d82e
3f0776a
 
 
 
cf7819d
30c8cdc
 
3f0776a
 
 
 
ce98582
3f0776a
 
 
 
 
398d82e
ce98582
398d82e
ce98582
 
 
398d82e
 
 
 
 
 
 
 
 
ce98582
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a59263
398d82e
 
 
 
6a59263
398d82e
 
 
 
 
 
 
 
 
 
d8ac97c
398d82e
 
 
 
 
 
 
d8ac97c
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ac97c
398d82e
 
 
 
 
 
 
d8ac97c
398d82e
 
 
 
 
 
d8ac97c
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f6ca9
 
 
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a59263
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a59263
398d82e
6a59263
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
6a59263
398d82e
 
 
 
 
 
f8f6ca9
398d82e
 
ce98582
398d82e
 
 
 
 
 
 
 
 
 
 
d8ac97c
 
ce98582
398d82e
d8ac97c
398d82e
 
 
 
 
 
 
 
 
6a59263
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a59263
398d82e
 
 
 
 
ce98582
398d82e
 
 
 
 
 
 
 
 
 
ce98582
398d82e
 
 
 
 
 
 
ce98582
f8f6ca9
398d82e
 
ce98582
398d82e
 
 
d8ac97c
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f6ca9
 
 
30c8cdc
3f0776a
398d82e
30c8cdc
3f0776a
 
f8f6ca9
b3f99d4
3f0776a
 
30c8cdc
 
 
 
cf7819d
3f0776a
 
30c8cdc
3f0776a
 
 
 
 
 
 
30c8cdc
ce98582
3f0776a
f8f6ca9
3f0776a
 
 
 
 
 
 
 
 
 
 
 
 
f8f6ca9
cf7819d
398d82e
30c8cdc
3f0776a
b3f99d4
f8f6ca9
30c8cdc
f8f6ca9
30c8cdc
3f0776a
 
f8f6ca9
3f0776a
398d82e
 
6a59263
 
 
398d82e
 
 
 
 
 
 
3f0776a
 
ce98582
3f0776a
 
 
 
398d82e
f8f6ca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a59263
398d82e
 
 
f8f6ca9
 
 
ce98582
f8f6ca9
 
 
 
 
 
 
 
 
 
 
 
 
398d82e
30c8cdc
398d82e
f8f6ca9
3f0776a
2779320
398d82e
3f0776a
398d82e
 
b3f99d4
398d82e
 
 
 
 
 
6a59263
 
 
 
 
 
 
 
 
 
 
 
 
 
b3f99d4
398d82e
 
 
 
b3f99d4
 
 
 
398d82e
f8f6ca9
30c8cdc
3f0776a
 
 
 
398d82e
30c8cdc
 
cf7819d
398d82e
30c8cdc
398d82e
ce98582
 
f8f6ca9
30c8cdc
ce98582
 
398d82e
 
ce98582
398d82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30c8cdc
 
398d82e
 
 
 
 
30c8cdc
 
ce98582
398d82e
 
30c8cdc
 
398d82e
 
 
ce98582
398d82e
 
ce98582
 
 
398d82e
 
ce98582
398d82e
 
 
 
 
 
 
 
 
ce98582
30c8cdc
ce98582
 
f8f6ca9
ce98582
 
cf7819d
ce98582
f8f6ca9
 
ce98582
30c8cdc
 
 
f8f6ca9
30c8cdc
398d82e
30c8cdc
398d82e
30c8cdc
6a59263
f8f6ca9
ce98582
 
 
d8ac97c
f8f6ca9
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ac97c
30c8cdc
f8f6ca9
30c8cdc
f8f6ca9
398d82e
 
 
30c8cdc
b3f99d4
30c8cdc
ce98582
398d82e
ce98582
b3f99d4
f8f6ca9
2779320
 
 
 
 
 
 
 
 
 
cf7819d
ce98582
f8f6ca9
398d82e
 
 
f8f6ca9
2779320
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re
import math

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def get_device():
    if torch.cuda.is_available():
        return "cuda"
    elif torch.backends.mps.is_available():
        return "mps"
    else:
        return "cpu"

DEVICE = get_device()

class UltraSupremeAnalyzer:
    """
    ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
    """
    def __init__(self):
        self.forbidden_elements = ["++", "weights", "white background [en dev]"]
        # ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
        self.micro_age_indicators = {
            "infant": ["baby", "infant", "newborn", "toddler"],
            "child": ["child", "kid", "young", "little", "small", "youth"],
            "teen": ["teenager", "teen", "adolescent", "young adult", "student"],
            "young_adult": ["young adult", "twenties", "thirty", "youthful", "fresh"],
            "middle_aged": ["middle-aged", "forties", "fifties", "mature", "experienced"],
            "senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
            "elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
        }
        self.ultra_facial_analysis = {
            "eye_features": {
                "shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
                "expression": ["intense gaze", "piercing stare", "gentle eyes", "wise eyes", "tired eyes", "alert eyes", "contemplative stare", "focused gaze", "distant look"],
                "color": ["brown eyes", "blue eyes", "green eyes", "hazel eyes", "dark eyes", "light eyes"],
                "condition": ["clear eyes", "bloodshot", "bright eyes", "dull eyes", "sparkling eyes"]
            },
            "eyebrow_analysis": ["thick eyebrows", "thin eyebrows", "bushy eyebrows", "arched eyebrows", "straight eyebrows", "gray eyebrows"],
            "nose_features": ["prominent nose", "straight nose", "aquiline nose", "small nose", "wide nose", "narrow nose"],
            "mouth_expression": {
                "shape": ["thin lips", "full lips", "small mouth", "wide mouth"],
                "expression": ["slight smile", "serious expression", "frown", "neutral expression", "contemplative look", "stern look", "gentle expression"]
            },
            "facial_hair_ultra": {
                "beard_types": ["full beard", "goatee", "mustache", "stubble", "clean-shaven", "five o'clock shadow"],
                "beard_texture": ["thick beard", "thin beard", "coarse beard", "fine beard", "well-groomed beard", "unkempt beard"],
                "beard_color": ["black beard", "brown beard", "gray beard", "grey beard", "silver beard", "white beard", "salt-and-pepper beard", "graying beard"],
                "beard_length": ["long beard", "short beard", "trimmed beard", "full-length beard"]
            },
            "skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
            "facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
        }
        self.emotion_micro_expressions = {
            "primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
            "complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
            "emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
        }
        self.cultural_religious_ultra = {
            "jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
            "christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
            "muslim": ["Muslim", "Islamic", "religious Muslim", "devout Muslim"],
            "buddhist": ["Buddhist", "monk", "religious Buddhist"],
            "general_religious": ["religious", "devout", "pious", "spiritual", "faithful", "observant"],
            "traditional_clothing": {
                "jewish": ["yarmulke", "kippah", "tallit", "tzitzit", "black hat", "Orthodox hat", "religious hat", "traditional Jewish hat"],
                "general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
            }
        }
        self.clothing_accessories_ultra = {
            "headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
            "eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
            "clothing_types": ["suit", "jacket", "shirt", "dress", "robe", "uniform", "casual wear", "formal wear", "business attire"],
            "clothing_colors": ["black", "white", "gray", "blue", "red", "green", "brown", "navy", "dark", "light"],
            "clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
            "accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
        }
        self.environmental_ultra_analysis = {
            "indoor_settings": {
                "residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
                "office": ["office", "workplace", "conference room", "meeting room", "boardroom", "desk"],
                "institutional": ["school", "hospital", "government building", "court", "library"],
                "religious": ["church", "synagogue", "mosque", "temple", "chapel", "sanctuary"],
                "commercial": ["store", "restaurant", "hotel", "mall", "shop"]
            },
            "outdoor_settings": {
                "natural": ["park", "garden", "forest", "beach", "mountain", "countryside", "field"],
                "urban": ["street", "city", "downtown", "plaza", "square", "avenue"],
                "architectural": ["building", "monument", "bridge", "structure"]
            },
            "lighting_ultra": {
                "natural_light": ["sunlight", "daylight", "morning light", "afternoon light", "evening light", "golden hour", "blue hour", "overcast light", "window light"],
                "artificial_light": ["indoor lighting", "electric light", "lamp light", "overhead lighting", "side lighting", "fluorescent", "LED lighting"],
                "dramatic_lighting": ["high contrast", "low key", "high key", "chiaroscuro", "dramatic shadows", "rim lighting", "backlighting", "spotlight"],
                "quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
            }
        }
        self.pose_body_language_ultra = {
            "head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
            "posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
            "hand_positions": ["hands clasped", "hands folded", "hands visible", "hands hidden", "gesturing", "pointing"],
            "sitting_positions": ["sitting upright", "leaning forward", "leaning back", "sitting casually", "formal sitting"],
            "eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
            "overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
        }
        self.composition_photography_ultra = {
            "shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
            "angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
            "framing": ["centered", "off-center", "rule of thirds", "tight framing", "loose framing"],
            "depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
            "camera_movement": ["static", "handheld", "stabilized", "smooth"]
        }
        self.technical_photography_ultra = {
            "camera_systems": {
                "professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
                "medium_format": ["Phase One", "Hasselblad", "Fujifilm GFX", "Pentax 645"],
                "full_frame": ["Canon EOS R", "Nikon Z", "Sony A7", "Leica SL"]
            },
            "lenses_ultra": {
                "portrait": ["85mm f/1.4", "135mm f/2", "105mm f/1.4", "200mm f/2.8"],
                "standard": ["50mm f/1.4", "35mm f/1.4", "24-70mm f/2.8"],
                "wide": ["24mm f/1.4", "16-35mm f/2.8", "14mm f/2.8"]
            },
            "aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
            "photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
        }
        self.quality_descriptors_ultra = {
            "based_on_age": {
                "elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
                "middle_aged": ["professional", "accomplished", "established", "confident", "mature", "refined", "sophisticated"],
                "young_adult": ["vibrant", "energetic", "fresh", "youthful", "dynamic", "spirited", "lively"]
            },
            "based_on_emotion": {
                "contemplative": ["thoughtful", "reflective", "meditative", "introspective"],
                "confident": ["assured", "self-possessed", "commanding", "authoritative"],
                "gentle": ["kind", "warm", "compassionate", "tender"],
                "stern": ["serious", "grave", "solemn", "austere"]
            },
            "based_on_setting": {
                "formal": ["professional", "official", "ceremonial", "dignified"],
                "casual": ["relaxed", "informal", "comfortable", "natural"],
                "artistic": ["creative", "expressive", "aesthetic", "artistic"]
            }
        }

    def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
        """ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
        combined_analysis = {
            "fast": clip_fast.lower(),
            "classic": clip_classic.lower(), 
            "best": clip_best.lower(),
            "combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
        }
        ultra_result = {
            "demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
            "facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
            "emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []},
            "clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []},
            "environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []},
            "pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []},
            "technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
            "intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
        }
        # ULTRA DEEP AGE ANALYSIS
        age_scores = {}
        for age_category, indicators in self.micro_age_indicators.items():
            score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
            if score > 0:
                age_scores[age_category] = score
        if age_scores:
            ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
            ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
        # GENDER DETECTION WITH CONFIDENCE
        male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
        female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
        male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
        female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
        if male_score > female_score:
            ultra_result["demographic"]["gender"] = "man"
        elif female_score > male_score:
            ultra_result["demographic"]["gender"] = "woman"
        # ULTRA CULTURAL/RELIGIOUS ANALYSIS
        for culture_type, indicators in self.cultural_religious_ultra.items():
            if isinstance(indicators, list):
                for indicator in indicators:
                    if indicator.lower() in combined_analysis["combined"]:
                        ultra_result["demographic"]["cultural_religious"].append(indicator)
        # COMPREHENSIVE FACIAL FEATURE ANALYSIS
        for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
            for feature in features:
                if feature in combined_analysis["combined"]:
                    ultra_result["facial_ultra"]["facial_hair"].append(feature)
        # Eyes analysis
        for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
            for feature in features:
                if feature in combined_analysis["combined"]:
                    ultra_result["facial_ultra"]["eyes"].append(feature)
        # EMOTION AND MICRO-EXPRESSION ANALYSIS
        emotion_scores = {}
        for emotion in self.emotion_micro_expressions["complex_emotions"]:
            if emotion in combined_analysis["combined"]:
                emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
        if emotion_scores:
            ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
            ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
        # CLOTHING AND ACCESSORIES ANALYSIS
        for category, items in self.clothing_accessories_ultra.items():
            if isinstance(items, list):
                for item in items:
                    if item in combined_analysis["combined"]:
                        ultra_result["clothing_accessories"][category].append(item)
        # ENVIRONMENTAL ULTRA ANALYSIS
        setting_scores = {}
        for main_setting, sub_settings in self.environmental_ultra_analysis.items():
            if isinstance(sub_settings, dict):
                for sub_type, locations in sub_settings.items():
                    score = sum(1 for location in locations if location in combined_analysis["combined"])
                    if score > 0:
                        setting_scores[sub_type] = score
        if setting_scores:
            ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
        # LIGHTING ANALYSIS
        for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
            for light_type in light_types:
                if light_type in combined_analysis["combined"]:
                    ultra_result["environmental"]["lighting_analysis"].append(light_type)
        # POSE AND BODY LANGUAGE ANALYSIS
        for pose_category, indicators in self.pose_body_language_ultra.items():
            for indicator in indicators:
                if indicator in combined_analysis["combined"]:
                    ultra_result["pose_composition"][pose_category].append(indicator)
        # TECHNICAL PHOTOGRAPHY ANALYSIS
        for shot_type in self.composition_photography_ultra["shot_types"]:
            if shot_type in combined_analysis["combined"]:
                ultra_result["technical_analysis"]["shot_type"] = shot_type
                break
        # CALCULATE INTELLIGENCE METRICS
        total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
        ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
        ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
        ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
        return ultra_result

    def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
        """BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
        components = []
        # 1. ULTRA INTELLIGENT ARTICLE SELECTION
        subject_desc = []
        if ultra_analysis["demographic"]["cultural_religious"]:
            subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
        if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
            subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
        if ultra_analysis["demographic"]["gender"]:
            subject_desc.append(ultra_analysis["demographic"]["gender"])
        if subject_desc:
            full_subject = " ".join(subject_desc)
            article = "An" if full_subject[0].lower() in 'aeiou' else "A"
        else:
            article = "A"
        components.append(article)
        # 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
        adjectives = []
        # Age-based adjectives
        age_cat = ultra_analysis["demographic"]["age_category"]
        if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
            adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
        # Emotion-based adjectives
        emotion = ultra_analysis["emotional_state"]["primary_emotion"]
        if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
            adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
        # Default if none found
        if not adjectives:
            adjectives = ["distinguished", "professional"]
        components.extend(adjectives[:2])  # Flux rule: max 2-3 adjectives
        # 3. ULTRA ENHANCED SUBJECT
        if subject_desc:
            components.append(" ".join(subject_desc))
        else:
            components.append("person")
        # 4. ULTRA DETAILED FACIAL FEATURES
        facial_details = []
        # Eyes
        if ultra_analysis["facial_ultra"]["eyes"]:
            eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
            facial_details.append(f"with {eye_desc}")
        # Facial hair with ultra detail
        if ultra_analysis["facial_ultra"]["facial_hair"]:
            beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
            if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
                facial_details.append("with a distinguished silver beard")
            elif any("beard" in detail for detail in beard_details):
                facial_details.append("with a full well-groomed beard")
        if facial_details:
            components.extend(facial_details)
        # 5. CLOTHING AND ACCESSORIES ULTRA
        clothing_details = []
        # Eyewear
        if ultra_analysis["clothing_accessories"]["eyewear"]:
            eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
            clothing_details.append(f"wearing {eyewear}")
        # Headwear
        if ultra_analysis["clothing_accessories"]["headwear"]:
            headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
            if ultra_analysis["demographic"]["cultural_religious"]:
                clothing_details.append("wearing a traditional black hat")
            else:
                clothing_details.append(f"wearing a {headwear}")
        if clothing_details:
            components.extend(clothing_details)
        # 6. ULTRA POSE AND BODY LANGUAGE
        pose_description = "positioned with natural dignity"
        if ultra_analysis["pose_composition"]["posture"]:
            posture = ultra_analysis["pose_composition"]["posture"][0]
            pose_description = f"maintaining {posture}"
        elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
            pose_description = "captured in contemplative portrait pose"
        components.append(pose_description)
        # 7. ULTRA ENVIRONMENTAL CONTEXT
        environment_desc = "in a thoughtfully composed environment"
        if ultra_analysis["environmental"]["setting_type"]:
            setting_map = {
                "residential": "in an intimate home setting",
                "office": "in a professional office environment", 
                "religious": "in a sacred traditional space",
                "formal": "in a distinguished formal setting"
            }
            environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
        components.append(environment_desc)
        # 8. ULTRA SOPHISTICATED LIGHTING
        lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
        if ultra_analysis["environmental"]["lighting_analysis"]:
            primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
            if "dramatic" in primary_light:
                lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play"
            elif "natural" in primary_light or "window" in primary_light:
                lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
            elif "soft" in primary_light:
                lighting_desc = "softly illuminated to reveal nuanced expressions and character"
        components.append(lighting_desc)
        # 9. ULTRA TECHNICAL SPECIFICATIONS
        if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
            camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
        elif ultra_analysis["demographic"]["cultural_religious"]:
            camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture" 
        else:
            camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
        components.append(camera_setup)
        # 10. ULTRA QUALITY DESIGNATION
        quality_designation = "professional portrait photography"
        if ultra_analysis["demographic"]["cultural_religious"]:
            quality_designation = "fine art documentary photography"
        elif ultra_analysis["emotional_state"]["primary_emotion"]:
            quality_designation = "expressive portrait photography"
        components.append(quality_designation)
        # ULTRA FINAL ASSEMBLY
        prompt = ", ".join(components)
        # Ultra cleaning and optimization
        prompt = re.sub(r'\s+', ' ', prompt)
        prompt = re.sub(r',\s*,+', ',', prompt)
        prompt = re.sub(r'\s*,\s*', ', ', prompt)
        prompt = prompt.replace(" ,", ",")
        if prompt:
            prompt = prompt[0].upper() + prompt[1:]
        return prompt

    def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
        """ULTRA SUPREME INTELLIGENCE SCORING"""
        score = 0
        breakdown = {}
        # Structure Excellence (15 points)
        structure_score = 0
        if prompt.startswith(("A", "An")):
            structure_score += 5
        if prompt.count(",") >= 8:
            structure_score += 10
        score += structure_score
        breakdown["structure"] = structure_score
        # Feature Detection Depth (25 points)
        features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
        score += features_score
        breakdown["features"] = features_score
        # Cultural/Religious Awareness (20 points)
        cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
        score += cultural_score
        breakdown["cultural"] = cultural_score
        # Emotional Intelligence (15 points)
        emotion_score = 0
        if ultra_analysis["emotional_state"]["primary_emotion"]:
            emotion_score += 10
        if ultra_analysis["emotional_state"]["emotion_confidence"] > 1:
            emotion_score += 5
        score += emotion_score
        breakdown["emotional"] = emotion_score
        # Technical Sophistication (15 points)
        tech_score = 0
        if "Phase One" in prompt or "Hasselblad" in prompt:
            tech_score += 5
        if any(aperture in prompt for aperture in ["f/1.4", "f/2.8", "f/4"]):
            tech_score += 5
        if any(lens in prompt for lens in ["85mm", "90mm", "80mm"]):
            tech_score += 5
        score += tech_score
        breakdown["technical"] = tech_score
        # Environmental Context (10 points)
        env_score = 0
        if ultra_analysis["environmental"]["setting_type"]:
            env_score += 5
        if ultra_analysis["environmental"]["lighting_analysis"]:
            env_score += 5
        score += env_score
        breakdown["environmental"] = env_score
        return min(score, 100), breakdown


class UltraSupremeOptimizer:
    def __init__(self):
        self.interrogator = None
        self.analyzer = UltraSupremeAnalyzer()
        self.usage_count = 0
        self.device = DEVICE
        self.is_initialized = False

    def initialize_model(self):
        if self.is_initialized:
            return True
        try:
            config = Config(
                clip_model_name="ViT-L-14/openai",
                download_cache=True,
                chunk_size=2048,
                quiet=True,
                device=self.device
            )
            self.interrogator = Interrogator(config)
            self.is_initialized = True
            if self.device == "cpu":
                gc.collect()
            else:
                torch.cuda.empty_cache()
            return True
        except Exception as e:
            logger.error(f"Initialization error: {e}")
            return False

    def optimize_image(self, image):
        if image is None:
            return None
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif not isinstance(image, Image.Image):
            image = Image.open(image)
        if image.mode != 'RGB':
            image = image.convert('RGB')
        max_size = 768 if self.device != "cpu" else 512
        if image.size[0] > max_size or image.size[1] > max_size:
            image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
        return image

    @spaces.GPU
    def generate_ultra_supreme_prompt(self, image):
        try:
            if not self.is_initialized:
                if not self.initialize_model():
                    return "â � �  Model initialization failed.", "Please refresh and try again.", 0, {}
            if image is None:
                return "â � �  Please upload an image.", "No image provided.", 0, {}
            self.usage_count += 1
            image = self.optimize_image(image)
            if image is None:
                return "â � �  Image processing failed.", "Invalid image format.", 0, {}
            start_time = datetime.now()
            # ULTRA SUPREME TRIPLE CLIP ANALYSIS
            logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
            clip_fast = self.interrogator.interrogate_fast(image)
            clip_classic = self.interrogator.interrogate_classic(image) 
            clip_best = self.interrogator.interrogate(image)
            logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
            # ULTRA SUPREME ANALYSIS
            ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
            # BUILD ULTRA SUPREME FLUX PROMPT
            optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
            # CALCULATE ULTRA SUPREME SCORE
            score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
            end_time = datetime.now()
            duration = (end_time - start_time).total_seconds()
            # Memory cleanup
            if self.device == "cpu":
                gc.collect()
            else:
                torch.cuda.empty_cache()
            # ULTRA COMPREHENSIVE ANALYSIS REPORT
            gpu_status = "â � ¡ ZeroGPU" if torch.cuda.is_available() else "ð � � » CPU"
            # Format detected elements
            features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
            cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
            clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
            analysis_info = f"""**ð � � �  ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status} â � ¢ {duration:.1f}s â � ¢ Triple CLIP Ultra Intelligence  
**Ultra Score:** {score}/100 â � ¢ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})  
**Generation:** #{self.usage_count}  
**ð � §  ULTRA DEEP DETECTION:**
â � ¢ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
â � ¢ **Cultural Context:** {cultural}  
â � ¢ **Facial Features:** {features}
â � ¢ **Accessories:** {clothing}
â � ¢ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
â � ¢ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
â � ¢ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
**ð � � �  CLIP ANALYSIS SOURCES:**
â � ¢ **Fast:** {clip_fast[:50]}...
â � ¢ **Classic:** {clip_classic[:50]}...  
â � ¢ **Best:** {clip_best[:50]}...
**â � ¡ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
            return optimized_prompt, analysis_info, score, breakdown
        except Exception as e:
            logger.error(f"Ultra supreme generation error: {e}")
            return f"â � �  Error: {str(e)}", "Please try with a different image.", 0, {}


# Initialize the optimizer
optimizer = UltraSupremeOptimizer()


def process_ultra_supreme_analysis(image):
    """Ultra supreme analysis wrapper"""
    try:
        prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
        # Ultra enhanced score display
        if score >= 95:
            color = "#059669"
            grade = "LEGENDARY"
        elif score >= 90:
            color = "#10b981"
            grade = "EXCELLENT"
        elif score >= 80:
            color = "#22c55e" 
            grade = "VERY GOOD"
        elif score >= 70:
            color = "#f59e0b"
            grade = "GOOD"
        elif score >= 60:
            color = "#f97316"
            grade = "FAIR"
        else:
            color = "#ef4444"
            grade = "NEEDS WORK"
        score_html = f'''
        <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
            <div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
            <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em;
                    # ULTRA SUPREME ANALYSIS
            ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
            # BUILD ULTRA SUPREME FLUX PROMPT
            optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
            # CALCULATE ULTRA SUPREME SCORE
            score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
            end_time = datetime.now()
            duration = (end_time - start_time).total_seconds()
            # Memory cleanup
            if self.device == "cpu":
                gc.collect()
            else:
                torch.cuda.empty_cache()
            # ULTRA COMPREHENSIVE ANALYSIS REPORT
            gpu_status = "â � ¡ ZeroGPU" if torch.cuda.is_available() else "ð � � » CPU"
            # Format detected elements
            features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
            cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
            clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
            analysis_info = f"""**ð � � �  ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status} â � ¢ {duration:.1f}s â � ¢ Triple CLIP Ultra Intelligence  
**Ultra Score:** {score}/100 â � ¢ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})  
**Generation:** #{self.usage_count}  
**ð � §  ULTRA DEEP DETECTION:**
â � ¢ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
â � ¢ **Cultural Context:** {cultural}  
â � ¢ **Facial Features:** {features}
â � ¢ **Accessories:** {clothing}
â � ¢ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
â � ¢ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
â � ¢ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
**ð � � �  CLIP ANALYSIS SOURCES:**
â � ¢ **Fast:** {clip_fast[:50]}...
â � ¢ **Classic:** {clip_classic[:50]}...  
â � ¢ **Best:** {clip_best[:50]}...
**â � ¡ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
            return optimized_prompt, analysis_info, score, breakdown
        except Exception as e:
            logger.error(f"Ultra supreme generation error: {e}")
            return f"â � �  Error: {str(e)}", "Please try with a different image.", 0, {}

# Initialize the optimizer
optimizer = UltraSupremeOptimizer()

def process_ultra_supreme_analysis(image):
    """Ultra supreme analysis wrapper"""
    try:
        prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
        # Ultra enhanced score display
        if score >= 95:
            color = "#059669"
            grade = "LEGENDARY"
        elif score >= 90:
            color = "#10b981"
            grade = "EXCELLENT"
        elif score >= 80:
            color = "#22c55e" 
            grade = "VERY GOOD"
        elif score >= 70:
            color = "#f59e0b"
            grade = "GOOD"
        elif score >= 60:
            color = "#f97316"
            grade = "FAIR"
        else:
            color = "#ef4444"
            grade = "NEEDS WORK"
        score_html = f'''
        <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
            <div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
            <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade}</div>
            <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
        </div>
        '''
        return prompt, info, score_html
    except Exception as e:
        logger.error(f"Ultra supreme wrapper error: {e}")
        return "â � �  Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'

def clear_outputs():
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'

def create_interface():
    css = """
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
    .gradio-container {
        max-width: 1600px !important;
        margin: 0 auto !important;
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
        background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important; 
    }
    .main-header {
        text-align: center;
        padding: 3rem 0 4rem 0;
        background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
        color: white;
        margin: -2rem -2rem 3rem -2rem;
        border-radius: 0 0 32px 32px;
        box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
        position: relative;
        overflow: hidden;
    }
    .main-header::before {
        content: '';
        position: absolute;
        top: 0;
        left: 0;
        right: 0;
        bottom: 0;
        background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
        z-index: 1;
    }
    .main-title {
        font-size: 4rem !important;
        font-weight: 900 !important;
        margin: 0 0 1rem 0 !important;
        letter-spacing: -0.05em !important;
        background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        background-clip: text;
        position: relative;
        z-index: 2;
    }
    .subtitle {
        font-size: 1.5rem !important;
        font-weight: 500 !important;
        opacity: 0.95 !important;
        margin: 0 !important;
        position: relative;
        z-index: 2;
    }
    .prompt-output {
        font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
        font-size: 15px !important;
        line-height: 1.8 !important;
        background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
        border: 2px solid #e2e8f0 !important;
        border-radius: 20px !important;
        padding: 2.5rem !important;
        box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
        transition: all 0.3s ease !important;
    }
    .prompt-output:hover {
        box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
        transform: translateY(-2px) !important;
    }
    """
    with gr.Blocks(
        theme=gr.themes.Soft(),
        title="ð � � �  Ultra Supreme Flux Optimizer",
        css=css
    ) as interface:
        gr.HTML("""
        <div class="main-header">
            <div class="main-title">ð � � �  ULTRA SUPREME FLUX OPTIMIZER</div>
            <div class="subtitle">Maximum Absolute Intelligence â � ¢ Triple CLIP Analysis â � ¢ Zero Compromise â � ¢ Research Supremacy</div>
        </div>
        """)
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("## ð � §  Ultra Supreme Analysis Engine")
                image_input = gr.Image(
                    label="Upload image for MAXIMUM intelligence analysis",
                    type="pil",
                    height=500
                )
                analyze_btn = gr.Button(
                    "ð � � �  ULTRA SUPREME ANALYSIS",
                    variant="primary",
                    size="lg"
                )
                gr.Markdown("""
                ### ð � � ¬ Maximum Absolute Intelligence
                **ð � � �  Triple CLIP Interrogation:**
                â � ¢ Fast analysis for broad contextual mapping
                â � ¢ Classic analysis for detailed feature extraction  
                â � ¢ Best analysis for maximum depth intelligence
                **ð � §  Ultra Deep Feature Extraction:**
                â � ¢ Micro-age detection with confidence scoring
                â � ¢ Cultural/religious context with semantic analysis
                â � ¢ Facial micro-features and expression mapping
                â � ¢ Emotional state and micro-expression detection
                â � ¢ Environmental lighting and atmospheric analysis
                â � ¢ Body language and pose interpretation
                â � ¢ Technical photography optimization
                **â � ¡ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
                """)
            with gr.Column(scale=1):
                gr.Markdown("## â � ¡ Ultra Supreme Result")
                prompt_output = gr.Textbox(
                    label="ð � � �  Ultra Supreme Optimized Flux Prompt",
                    placeholder="Upload an image to witness absolute maximum intelligence analysis...",
                    lines=12,
                    max_lines=20,
                    elem_classes=["prompt-output"],
                    show_copy_button=True
                )
                score_output = gr.HTML(
                    value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
                )
                info_output = gr.Markdown(value="")
                clear_btn = gr.Button("ð � � � ï¸ �  Clear Ultra Analysis", size="sm")
        # Event handlers
        analyze_btn.click(
            fn=process_ultra_supreme_analysis,
            inputs=[image_input],
            outputs=[prompt_output, info_output, score_output]
        )
        clear_btn.click(
            fn=clear_outputs,
            outputs=[prompt_output, info_output, score_output]
        )
        gr.Markdown("""
        ---
        ### ð � � �  Ultra Supreme Research Foundation
        This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation, 
        ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible 
        understanding and applies research-validated Flux rules with supreme intelligence.
        **ð � � ¬ Pariente AI Research Laboratory** â � ¢ **ð � � �  Ultra Supreme Intelligence Engine**
        """)
    return interface

# Launch the application
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True
    )