Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,393 Bytes
ce98582 30c8cdc cf7819d 30c8cdc 3f0776a 30c8cdc 3f0776a ce98582 398d82e 3f0776a cf7819d 30c8cdc 3f0776a ce98582 3f0776a 398d82e ce98582 398d82e ce98582 398d82e ce98582 398d82e 6a59263 398d82e 6a59263 398d82e d8ac97c 398d82e d8ac97c 398d82e d8ac97c 398d82e d8ac97c 398d82e d8ac97c 398d82e f8f6ca9 398d82e 6a59263 398d82e 6a59263 398d82e 6a59263 398d82e 6a59263 398d82e f8f6ca9 398d82e ce98582 398d82e d8ac97c ce98582 398d82e d8ac97c 398d82e 6a59263 398d82e 6a59263 398d82e ce98582 398d82e ce98582 398d82e ce98582 f8f6ca9 398d82e ce98582 398d82e d8ac97c 398d82e f8f6ca9 30c8cdc 3f0776a 398d82e 30c8cdc 3f0776a f8f6ca9 b3f99d4 3f0776a 30c8cdc cf7819d 3f0776a 30c8cdc 3f0776a 30c8cdc ce98582 3f0776a f8f6ca9 3f0776a f8f6ca9 cf7819d 398d82e 30c8cdc 3f0776a b3f99d4 f8f6ca9 30c8cdc f8f6ca9 30c8cdc 3f0776a f8f6ca9 3f0776a 398d82e 6a59263 398d82e 3f0776a ce98582 3f0776a 398d82e f8f6ca9 6a59263 398d82e f8f6ca9 ce98582 f8f6ca9 398d82e 30c8cdc 398d82e f8f6ca9 3f0776a 2779320 398d82e 3f0776a 398d82e b3f99d4 398d82e 6a59263 b3f99d4 398d82e b3f99d4 398d82e f8f6ca9 30c8cdc 3f0776a 398d82e 30c8cdc cf7819d 398d82e 30c8cdc 398d82e ce98582 f8f6ca9 30c8cdc ce98582 398d82e ce98582 398d82e 30c8cdc 398d82e 30c8cdc ce98582 398d82e 30c8cdc 398d82e ce98582 398d82e ce98582 398d82e ce98582 398d82e ce98582 30c8cdc ce98582 f8f6ca9 ce98582 cf7819d ce98582 f8f6ca9 ce98582 30c8cdc f8f6ca9 30c8cdc 398d82e 30c8cdc 398d82e 30c8cdc 6a59263 f8f6ca9 ce98582 d8ac97c f8f6ca9 d8ac97c 30c8cdc f8f6ca9 30c8cdc f8f6ca9 398d82e 30c8cdc b3f99d4 30c8cdc ce98582 398d82e ce98582 b3f99d4 f8f6ca9 2779320 cf7819d ce98582 f8f6ca9 398d82e f8f6ca9 2779320 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 |
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re
import math
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
DEVICE = get_device()
class UltraSupremeAnalyzer:
"""
ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
"""
def __init__(self):
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
# ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
self.micro_age_indicators = {
"infant": ["baby", "infant", "newborn", "toddler"],
"child": ["child", "kid", "young", "little", "small", "youth"],
"teen": ["teenager", "teen", "adolescent", "young adult", "student"],
"young_adult": ["young adult", "twenties", "thirty", "youthful", "fresh"],
"middle_aged": ["middle-aged", "forties", "fifties", "mature", "experienced"],
"senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
"elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
}
self.ultra_facial_analysis = {
"eye_features": {
"shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
"expression": ["intense gaze", "piercing stare", "gentle eyes", "wise eyes", "tired eyes", "alert eyes", "contemplative stare", "focused gaze", "distant look"],
"color": ["brown eyes", "blue eyes", "green eyes", "hazel eyes", "dark eyes", "light eyes"],
"condition": ["clear eyes", "bloodshot", "bright eyes", "dull eyes", "sparkling eyes"]
},
"eyebrow_analysis": ["thick eyebrows", "thin eyebrows", "bushy eyebrows", "arched eyebrows", "straight eyebrows", "gray eyebrows"],
"nose_features": ["prominent nose", "straight nose", "aquiline nose", "small nose", "wide nose", "narrow nose"],
"mouth_expression": {
"shape": ["thin lips", "full lips", "small mouth", "wide mouth"],
"expression": ["slight smile", "serious expression", "frown", "neutral expression", "contemplative look", "stern look", "gentle expression"]
},
"facial_hair_ultra": {
"beard_types": ["full beard", "goatee", "mustache", "stubble", "clean-shaven", "five o'clock shadow"],
"beard_texture": ["thick beard", "thin beard", "coarse beard", "fine beard", "well-groomed beard", "unkempt beard"],
"beard_color": ["black beard", "brown beard", "gray beard", "grey beard", "silver beard", "white beard", "salt-and-pepper beard", "graying beard"],
"beard_length": ["long beard", "short beard", "trimmed beard", "full-length beard"]
},
"skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
"facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
}
self.emotion_micro_expressions = {
"primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
"complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
"emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
}
self.cultural_religious_ultra = {
"jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
"christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
"muslim": ["Muslim", "Islamic", "religious Muslim", "devout Muslim"],
"buddhist": ["Buddhist", "monk", "religious Buddhist"],
"general_religious": ["religious", "devout", "pious", "spiritual", "faithful", "observant"],
"traditional_clothing": {
"jewish": ["yarmulke", "kippah", "tallit", "tzitzit", "black hat", "Orthodox hat", "religious hat", "traditional Jewish hat"],
"general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
}
}
self.clothing_accessories_ultra = {
"headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
"eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
"clothing_types": ["suit", "jacket", "shirt", "dress", "robe", "uniform", "casual wear", "formal wear", "business attire"],
"clothing_colors": ["black", "white", "gray", "blue", "red", "green", "brown", "navy", "dark", "light"],
"clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
"accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
}
self.environmental_ultra_analysis = {
"indoor_settings": {
"residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
"office": ["office", "workplace", "conference room", "meeting room", "boardroom", "desk"],
"institutional": ["school", "hospital", "government building", "court", "library"],
"religious": ["church", "synagogue", "mosque", "temple", "chapel", "sanctuary"],
"commercial": ["store", "restaurant", "hotel", "mall", "shop"]
},
"outdoor_settings": {
"natural": ["park", "garden", "forest", "beach", "mountain", "countryside", "field"],
"urban": ["street", "city", "downtown", "plaza", "square", "avenue"],
"architectural": ["building", "monument", "bridge", "structure"]
},
"lighting_ultra": {
"natural_light": ["sunlight", "daylight", "morning light", "afternoon light", "evening light", "golden hour", "blue hour", "overcast light", "window light"],
"artificial_light": ["indoor lighting", "electric light", "lamp light", "overhead lighting", "side lighting", "fluorescent", "LED lighting"],
"dramatic_lighting": ["high contrast", "low key", "high key", "chiaroscuro", "dramatic shadows", "rim lighting", "backlighting", "spotlight"],
"quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
}
}
self.pose_body_language_ultra = {
"head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
"posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
"hand_positions": ["hands clasped", "hands folded", "hands visible", "hands hidden", "gesturing", "pointing"],
"sitting_positions": ["sitting upright", "leaning forward", "leaning back", "sitting casually", "formal sitting"],
"eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
"overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
}
self.composition_photography_ultra = {
"shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
"angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
"framing": ["centered", "off-center", "rule of thirds", "tight framing", "loose framing"],
"depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
"camera_movement": ["static", "handheld", "stabilized", "smooth"]
}
self.technical_photography_ultra = {
"camera_systems": {
"professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
"medium_format": ["Phase One", "Hasselblad", "Fujifilm GFX", "Pentax 645"],
"full_frame": ["Canon EOS R", "Nikon Z", "Sony A7", "Leica SL"]
},
"lenses_ultra": {
"portrait": ["85mm f/1.4", "135mm f/2", "105mm f/1.4", "200mm f/2.8"],
"standard": ["50mm f/1.4", "35mm f/1.4", "24-70mm f/2.8"],
"wide": ["24mm f/1.4", "16-35mm f/2.8", "14mm f/2.8"]
},
"aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
"photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
}
self.quality_descriptors_ultra = {
"based_on_age": {
"elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
"middle_aged": ["professional", "accomplished", "established", "confident", "mature", "refined", "sophisticated"],
"young_adult": ["vibrant", "energetic", "fresh", "youthful", "dynamic", "spirited", "lively"]
},
"based_on_emotion": {
"contemplative": ["thoughtful", "reflective", "meditative", "introspective"],
"confident": ["assured", "self-possessed", "commanding", "authoritative"],
"gentle": ["kind", "warm", "compassionate", "tender"],
"stern": ["serious", "grave", "solemn", "austere"]
},
"based_on_setting": {
"formal": ["professional", "official", "ceremonial", "dignified"],
"casual": ["relaxed", "informal", "comfortable", "natural"],
"artistic": ["creative", "expressive", "aesthetic", "artistic"]
}
}
def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
"""ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
combined_analysis = {
"fast": clip_fast.lower(),
"classic": clip_classic.lower(),
"best": clip_best.lower(),
"combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
}
ultra_result = {
"demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
"facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
"emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []},
"clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []},
"environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []},
"pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []},
"technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
"intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
}
# ULTRA DEEP AGE ANALYSIS
age_scores = {}
for age_category, indicators in self.micro_age_indicators.items():
score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
if score > 0:
age_scores[age_category] = score
if age_scores:
ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
# GENDER DETECTION WITH CONFIDENCE
male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
if male_score > female_score:
ultra_result["demographic"]["gender"] = "man"
elif female_score > male_score:
ultra_result["demographic"]["gender"] = "woman"
# ULTRA CULTURAL/RELIGIOUS ANALYSIS
for culture_type, indicators in self.cultural_religious_ultra.items():
if isinstance(indicators, list):
for indicator in indicators:
if indicator.lower() in combined_analysis["combined"]:
ultra_result["demographic"]["cultural_religious"].append(indicator)
# COMPREHENSIVE FACIAL FEATURE ANALYSIS
for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
for feature in features:
if feature in combined_analysis["combined"]:
ultra_result["facial_ultra"]["facial_hair"].append(feature)
# Eyes analysis
for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
for feature in features:
if feature in combined_analysis["combined"]:
ultra_result["facial_ultra"]["eyes"].append(feature)
# EMOTION AND MICRO-EXPRESSION ANALYSIS
emotion_scores = {}
for emotion in self.emotion_micro_expressions["complex_emotions"]:
if emotion in combined_analysis["combined"]:
emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
if emotion_scores:
ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
# CLOTHING AND ACCESSORIES ANALYSIS
for category, items in self.clothing_accessories_ultra.items():
if isinstance(items, list):
for item in items:
if item in combined_analysis["combined"]:
ultra_result["clothing_accessories"][category].append(item)
# ENVIRONMENTAL ULTRA ANALYSIS
setting_scores = {}
for main_setting, sub_settings in self.environmental_ultra_analysis.items():
if isinstance(sub_settings, dict):
for sub_type, locations in sub_settings.items():
score = sum(1 for location in locations if location in combined_analysis["combined"])
if score > 0:
setting_scores[sub_type] = score
if setting_scores:
ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
# LIGHTING ANALYSIS
for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
for light_type in light_types:
if light_type in combined_analysis["combined"]:
ultra_result["environmental"]["lighting_analysis"].append(light_type)
# POSE AND BODY LANGUAGE ANALYSIS
for pose_category, indicators in self.pose_body_language_ultra.items():
for indicator in indicators:
if indicator in combined_analysis["combined"]:
ultra_result["pose_composition"][pose_category].append(indicator)
# TECHNICAL PHOTOGRAPHY ANALYSIS
for shot_type in self.composition_photography_ultra["shot_types"]:
if shot_type in combined_analysis["combined"]:
ultra_result["technical_analysis"]["shot_type"] = shot_type
break
# CALCULATE INTELLIGENCE METRICS
total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
return ultra_result
def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
"""BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
components = []
# 1. ULTRA INTELLIGENT ARTICLE SELECTION
subject_desc = []
if ultra_analysis["demographic"]["cultural_religious"]:
subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
if ultra_analysis["demographic"]["gender"]:
subject_desc.append(ultra_analysis["demographic"]["gender"])
if subject_desc:
full_subject = " ".join(subject_desc)
article = "An" if full_subject[0].lower() in 'aeiou' else "A"
else:
article = "A"
components.append(article)
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
adjectives = []
# Age-based adjectives
age_cat = ultra_analysis["demographic"]["age_category"]
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
# Emotion-based adjectives
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
# Default if none found
if not adjectives:
adjectives = ["distinguished", "professional"]
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
# 3. ULTRA ENHANCED SUBJECT
if subject_desc:
components.append(" ".join(subject_desc))
else:
components.append("person")
# 4. ULTRA DETAILED FACIAL FEATURES
facial_details = []
# Eyes
if ultra_analysis["facial_ultra"]["eyes"]:
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
facial_details.append(f"with {eye_desc}")
# Facial hair with ultra detail
if ultra_analysis["facial_ultra"]["facial_hair"]:
beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
facial_details.append("with a distinguished silver beard")
elif any("beard" in detail for detail in beard_details):
facial_details.append("with a full well-groomed beard")
if facial_details:
components.extend(facial_details)
# 5. CLOTHING AND ACCESSORIES ULTRA
clothing_details = []
# Eyewear
if ultra_analysis["clothing_accessories"]["eyewear"]:
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
clothing_details.append(f"wearing {eyewear}")
# Headwear
if ultra_analysis["clothing_accessories"]["headwear"]:
headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
if ultra_analysis["demographic"]["cultural_religious"]:
clothing_details.append("wearing a traditional black hat")
else:
clothing_details.append(f"wearing a {headwear}")
if clothing_details:
components.extend(clothing_details)
# 6. ULTRA POSE AND BODY LANGUAGE
pose_description = "positioned with natural dignity"
if ultra_analysis["pose_composition"]["posture"]:
posture = ultra_analysis["pose_composition"]["posture"][0]
pose_description = f"maintaining {posture}"
elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
pose_description = "captured in contemplative portrait pose"
components.append(pose_description)
# 7. ULTRA ENVIRONMENTAL CONTEXT
environment_desc = "in a thoughtfully composed environment"
if ultra_analysis["environmental"]["setting_type"]:
setting_map = {
"residential": "in an intimate home setting",
"office": "in a professional office environment",
"religious": "in a sacred traditional space",
"formal": "in a distinguished formal setting"
}
environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
components.append(environment_desc)
# 8. ULTRA SOPHISTICATED LIGHTING
lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
if ultra_analysis["environmental"]["lighting_analysis"]:
primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
if "dramatic" in primary_light:
lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play"
elif "natural" in primary_light or "window" in primary_light:
lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
elif "soft" in primary_light:
lighting_desc = "softly illuminated to reveal nuanced expressions and character"
components.append(lighting_desc)
# 9. ULTRA TECHNICAL SPECIFICATIONS
if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
elif ultra_analysis["demographic"]["cultural_religious"]:
camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
else:
camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
components.append(camera_setup)
# 10. ULTRA QUALITY DESIGNATION
quality_designation = "professional portrait photography"
if ultra_analysis["demographic"]["cultural_religious"]:
quality_designation = "fine art documentary photography"
elif ultra_analysis["emotional_state"]["primary_emotion"]:
quality_designation = "expressive portrait photography"
components.append(quality_designation)
# ULTRA FINAL ASSEMBLY
prompt = ", ".join(components)
# Ultra cleaning and optimization
prompt = re.sub(r'\s+', ' ', prompt)
prompt = re.sub(r',\s*,+', ',', prompt)
prompt = re.sub(r'\s*,\s*', ', ', prompt)
prompt = prompt.replace(" ,", ",")
if prompt:
prompt = prompt[0].upper() + prompt[1:]
return prompt
def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
"""ULTRA SUPREME INTELLIGENCE SCORING"""
score = 0
breakdown = {}
# Structure Excellence (15 points)
structure_score = 0
if prompt.startswith(("A", "An")):
structure_score += 5
if prompt.count(",") >= 8:
structure_score += 10
score += structure_score
breakdown["structure"] = structure_score
# Feature Detection Depth (25 points)
features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
score += features_score
breakdown["features"] = features_score
# Cultural/Religious Awareness (20 points)
cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
score += cultural_score
breakdown["cultural"] = cultural_score
# Emotional Intelligence (15 points)
emotion_score = 0
if ultra_analysis["emotional_state"]["primary_emotion"]:
emotion_score += 10
if ultra_analysis["emotional_state"]["emotion_confidence"] > 1:
emotion_score += 5
score += emotion_score
breakdown["emotional"] = emotion_score
# Technical Sophistication (15 points)
tech_score = 0
if "Phase One" in prompt or "Hasselblad" in prompt:
tech_score += 5
if any(aperture in prompt for aperture in ["f/1.4", "f/2.8", "f/4"]):
tech_score += 5
if any(lens in prompt for lens in ["85mm", "90mm", "80mm"]):
tech_score += 5
score += tech_score
breakdown["technical"] = tech_score
# Environmental Context (10 points)
env_score = 0
if ultra_analysis["environmental"]["setting_type"]:
env_score += 5
if ultra_analysis["environmental"]["lighting_analysis"]:
env_score += 5
score += env_score
breakdown["environmental"] = env_score
return min(score, 100), breakdown
class UltraSupremeOptimizer:
def __init__(self):
self.interrogator = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = DEVICE
self.is_initialized = False
def initialize_model(self):
if self.is_initialized:
return True
try:
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image):
if image is None:
return None
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
if image.mode != 'RGB':
image = image.convert('RGB')
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
@spaces.GPU
def generate_ultra_supreme_prompt(self, image):
try:
if not self.is_initialized:
if not self.initialize_model():
return "â � � Model initialization failed.", "Please refresh and try again.", 0, {}
if image is None:
return "â � � Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
image = self.optimize_image(image)
if image is None:
return "â � � Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
# ULTRA SUPREME TRIPLE CLIP ANALYSIS
logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
clip_best = self.interrogator.interrogate(image)
logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
# ULTRA SUPREME ANALYSIS
ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
# BUILD ULTRA SUPREME FLUX PROMPT
optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
# CALCULATE ULTRA SUPREME SCORE
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# ULTRA COMPREHENSIVE ANALYSIS REPORT
gpu_status = "â � ¡ ZeroGPU" if torch.cuda.is_available() else "ð � � » CPU"
# Format detected elements
features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
analysis_info = f"""**ð � � � ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status} â � ¢ {duration:.1f}s â � ¢ Triple CLIP Ultra Intelligence
**Ultra Score:** {score}/100 â � ¢ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
**Generation:** #{self.usage_count}
**ð � § ULTRA DEEP DETECTION:**
â � ¢ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
â � ¢ **Cultural Context:** {cultural}
â � ¢ **Facial Features:** {features}
â � ¢ **Accessories:** {clothing}
â � ¢ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
â � ¢ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
â � ¢ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
**ð � � � CLIP ANALYSIS SOURCES:**
â � ¢ **Fast:** {clip_fast[:50]}...
â � ¢ **Classic:** {clip_classic[:50]}...
â � ¢ **Best:** {clip_best[:50]}...
**â � ¡ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}")
return f"â � � Error: {str(e)}", "Please try with a different image.", 0, {}
# Initialize the optimizer
optimizer = UltraSupremeOptimizer()
def process_ultra_supreme_analysis(image):
"""Ultra supreme analysis wrapper"""
try:
prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
# Ultra enhanced score display
if score >= 95:
color = "#059669"
grade = "LEGENDARY"
elif score >= 90:
color = "#10b981"
grade = "EXCELLENT"
elif score >= 80:
color = "#22c55e"
grade = "VERY GOOD"
elif score >= 70:
color = "#f59e0b"
grade = "GOOD"
elif score >= 60:
color = "#f97316"
grade = "FAIR"
else:
color = "#ef4444"
grade = "NEEDS WORK"
score_html = f'''
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
<div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em;
# ULTRA SUPREME ANALYSIS
ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
# BUILD ULTRA SUPREME FLUX PROMPT
optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
# CALCULATE ULTRA SUPREME SCORE
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# ULTRA COMPREHENSIVE ANALYSIS REPORT
gpu_status = "â � ¡ ZeroGPU" if torch.cuda.is_available() else "ð � � » CPU"
# Format detected elements
features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
analysis_info = f"""**ð � � � ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status} â � ¢ {duration:.1f}s â � ¢ Triple CLIP Ultra Intelligence
**Ultra Score:** {score}/100 â � ¢ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
**Generation:** #{self.usage_count}
**ð � § ULTRA DEEP DETECTION:**
â � ¢ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
â � ¢ **Cultural Context:** {cultural}
â � ¢ **Facial Features:** {features}
â � ¢ **Accessories:** {clothing}
â � ¢ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
â � ¢ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
â � ¢ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
**ð � � � CLIP ANALYSIS SOURCES:**
â � ¢ **Fast:** {clip_fast[:50]}...
â � ¢ **Classic:** {clip_classic[:50]}...
â � ¢ **Best:** {clip_best[:50]}...
**â � ¡ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}")
return f"â � � Error: {str(e)}", "Please try with a different image.", 0, {}
# Initialize the optimizer
optimizer = UltraSupremeOptimizer()
def process_ultra_supreme_analysis(image):
"""Ultra supreme analysis wrapper"""
try:
prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
# Ultra enhanced score display
if score >= 95:
color = "#059669"
grade = "LEGENDARY"
elif score >= 90:
color = "#10b981"
grade = "EXCELLENT"
elif score >= 80:
color = "#22c55e"
grade = "VERY GOOD"
elif score >= 70:
color = "#f59e0b"
grade = "GOOD"
elif score >= 60:
color = "#f97316"
grade = "FAIR"
else:
color = "#ef4444"
grade = "NEEDS WORK"
score_html = f'''
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
<div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade}</div>
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
</div>
'''
return prompt, info, score_html
except Exception as e:
logger.error(f"Ultra supreme wrapper error: {e}")
return "â � � Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
def clear_outputs():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
def create_interface():
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
.gradio-container {
max-width: 1600px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
.main-header {
text-align: center;
padding: 3rem 0 4rem 0;
background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
color: white;
margin: -2rem -2rem 3rem -2rem;
border-radius: 0 0 32px 32px;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
position: relative;
overflow: hidden;
}
.main-header::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
z-index: 1;
}
.main-title {
font-size: 4rem !important;
font-weight: 900 !important;
margin: 0 0 1rem 0 !important;
letter-spacing: -0.05em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
position: relative;
z-index: 2;
}
.subtitle {
font-size: 1.5rem !important;
font-weight: 500 !important;
opacity: 0.95 !important;
margin: 0 !important;
position: relative;
z-index: 2;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 15px !important;
line-height: 1.8 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 2px solid #e2e8f0 !important;
border-radius: 20px !important;
padding: 2.5rem !important;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
transition: all 0.3s ease !important;
}
.prompt-output:hover {
box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
transform: translateY(-2px) !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="ð � � � Ultra Supreme Flux Optimizer",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">ð � � � ULTRA SUPREME FLUX OPTIMIZER</div>
<div class="subtitle">Maximum Absolute Intelligence â � ¢ Triple CLIP Analysis â � ¢ Zero Compromise â � ¢ Research Supremacy</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## ð � § Ultra Supreme Analysis Engine")
image_input = gr.Image(
label="Upload image for MAXIMUM intelligence analysis",
type="pil",
height=500
)
analyze_btn = gr.Button(
"ð � � � ULTRA SUPREME ANALYSIS",
variant="primary",
size="lg"
)
gr.Markdown("""
### ð � � ¬ Maximum Absolute Intelligence
**ð � � � Triple CLIP Interrogation:**
â � ¢ Fast analysis for broad contextual mapping
â � ¢ Classic analysis for detailed feature extraction
â � ¢ Best analysis for maximum depth intelligence
**ð � § Ultra Deep Feature Extraction:**
â � ¢ Micro-age detection with confidence scoring
â � ¢ Cultural/religious context with semantic analysis
â � ¢ Facial micro-features and expression mapping
â � ¢ Emotional state and micro-expression detection
â � ¢ Environmental lighting and atmospheric analysis
â � ¢ Body language and pose interpretation
â � ¢ Technical photography optimization
**â � ¡ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
""")
with gr.Column(scale=1):
gr.Markdown("## â � ¡ Ultra Supreme Result")
prompt_output = gr.Textbox(
label="ð � � � Ultra Supreme Optimized Flux Prompt",
placeholder="Upload an image to witness absolute maximum intelligence analysis...",
lines=12,
max_lines=20,
elem_classes=["prompt-output"],
show_copy_button=True
)
score_output = gr.HTML(
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
)
info_output = gr.Markdown(value="")
clear_btn = gr.Button("ð � � � ï¸ � Clear Ultra Analysis", size="sm")
# Event handlers
analyze_btn.click(
fn=process_ultra_supreme_analysis,
inputs=[image_input],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_outputs,
outputs=[prompt_output, info_output, score_output]
)
gr.Markdown("""
---
### ð � � � Ultra Supreme Research Foundation
This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
understanding and applies research-validated Flux rules with supreme intelligence.
**ð � � ¬ Pariente AI Research Laboratory** â � ¢ **ð � � � Ultra Supreme Intelligence Engine**
""")
return interface
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |