Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,626 Bytes
be92860 76b9518 be92860 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
"""
Ultra Supreme Optimizer - Main optimization engine for image analysis
"""
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
import spaces
import gc
import logging
from datetime import datetime
from typing import Tuple, Dict, Any, Optional
import torch
import numpy as np
from PIL import Image
from clip_interrogator import Config, Interrogator
from analyzer import UltraSupremeAnalyzer
logger = logging.getLogger(__name__)
class UltraSupremeOptimizer:
"""Main optimizer class for ultra supreme image analysis"""
def __init__(self):
self.interrogator: Optional[Interrogator] = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = self._get_device()
self.is_initialized = False
@staticmethod
def _get_device() -> str:
"""Determine the best available device for computation"""
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def initialize_model(self) -> bool:
"""Initialize the CLIP interrogator model"""
if self.is_initialized:
return True
try:
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
# Clean up memory after initialization
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image: Any) -> Optional[Image.Image]:
"""Optimize image for processing"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Image optimization error: {e}")
return None
@spaces.GPU
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
"""
Generate ultra supreme prompt from image
Returns:
Tuple of (prompt, analysis_info, score, breakdown)
"""
try:
# Initialize model if needed
if not self.is_initialized:
if not self.initialize_model():
return "β Model initialization failed.", "Please refresh and try again.", 0, {}
# Validate input
if image is None:
return "β Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
# Optimize image
image = self.optimize_image(image)
if image is None:
return "β Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
# ULTRA SUPREME TRIPLE CLIP ANALYSIS
logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
clip_best = self.interrogator.interrogate(image)
logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
# ULTRA SUPREME ANALYSIS
ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
# BUILD ULTRA SUPREME FLUX PROMPT
optimized_prompt = self.analyzer.build_ultra_supreme_prompt(
ultra_analysis,
[clip_fast, clip_classic, clip_best]
)
# CALCULATE ULTRA SUPREME SCORE
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# Generate analysis report
analysis_info = self._generate_analysis_report(
ultra_analysis, clip_fast, clip_classic, clip_best,
score, breakdown, duration
)
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}")
return f"β Error: {str(e)}", "Please try with a different image.", 0, {}
def _generate_analysis_report(self, ultra_analysis: Dict[str, Any],
clip_fast: str, clip_classic: str, clip_best: str,
score: int, breakdown: Dict[str, int],
duration: float) -> str:
"""Generate detailed analysis report"""
gpu_status = "β‘ ZeroGPU" if torch.cuda.is_available() else "π» CPU"
# Format detected elements - Fixed the .title() error by checking for None
features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
# Safe access to potentially None values
age_category = ultra_analysis["demographic"].get("age_category", "Unspecified")
if age_category and age_category != "Unspecified":
age_category = age_category.replace("_", " ").title()
setting_type = ultra_analysis["environmental"].get("setting_type", "Standard")
if setting_type and setting_type != "Standard":
setting_type = setting_type.title()
primary_emotion = ultra_analysis["emotional_state"].get("primary_emotion", "Neutral")
if primary_emotion and primary_emotion != "Neutral":
primary_emotion = primary_emotion.title()
analysis_info = f"""**π ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status} β’ {duration:.1f}s β’ Triple CLIP Ultra Intelligence
**Ultra Score:** {score}/100 β’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
**Generation:** #{self.usage_count}
**π§ ULTRA DEEP DETECTION:**
- **Age Category:** {age_category} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
- **Cultural Context:** {cultural}
- **Facial Features:** {features}
- **Accessories:** {clothing}
- **Setting:** {setting_type}
- **Emotion:** {primary_emotion}
- **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
**π CLIP ANALYSIS SOURCES:**
- **Fast:** {clip_fast[:50]}...
- **Classic:** {clip_classic[:50]}...
- **Best:** {clip_best[:50]}...
**β‘ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
return analysis_info |