File size: 22,145 Bytes
ce98582
30c8cdc
 
 
 
cf7819d
30c8cdc
 
3f0776a
30c8cdc
3f0776a
ce98582
3f0776a
 
 
 
30c8cdc
cf7819d
30c8cdc
 
3f0776a
 
 
 
ce98582
3f0776a
 
 
 
 
d8ac97c
ce98582
d8ac97c
ce98582
 
 
 
 
d8ac97c
 
 
 
 
ce98582
 
d8ac97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce98582
d8ac97c
 
 
 
 
 
 
 
 
 
 
 
ce98582
d8ac97c
 
 
 
 
 
 
 
 
 
 
ce98582
d8ac97c
 
 
 
 
 
ce98582
d8ac97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce98582
 
d8ac97c
 
 
 
 
 
ce98582
 
d8ac97c
 
 
 
 
 
 
 
ce98582
d8ac97c
 
ce98582
d8ac97c
 
 
 
 
 
ce98582
d8ac97c
 
 
 
 
 
 
 
 
 
 
 
ce98582
d8ac97c
 
ce98582
d8ac97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce98582
d8ac97c
 
 
 
 
 
ce98582
d8ac97c
 
 
 
 
ce98582
d8ac97c
 
 
 
 
 
ce98582
d8ac97c
 
 
ce98582
d8ac97c
 
ce98582
d8ac97c
 
 
 
ce98582
 
d8ac97c
 
 
ce98582
 
 
d8ac97c
 
ce98582
 
d8ac97c
 
 
 
 
 
ce98582
 
d8ac97c
 
 
ce98582
d8ac97c
 
ce98582
 
d8ac97c
 
ce98582
 
d8ac97c
 
ce98582
 
d8ac97c
 
 
 
 
 
 
ce98582
b3f99d4
30c8cdc
ce98582
30c8cdc
3f0776a
d8ac97c
30c8cdc
3f0776a
 
30c8cdc
b3f99d4
3f0776a
 
 
30c8cdc
 
 
 
cf7819d
3f0776a
 
30c8cdc
3f0776a
 
 
 
 
 
 
 
30c8cdc
3f0776a
 
30c8cdc
ce98582
3f0776a
30c8cdc
3f0776a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7819d
d8ac97c
30c8cdc
3f0776a
b3f99d4
 
3f0776a
30c8cdc
b3f99d4
30c8cdc
 
 
3f0776a
 
b3f99d4
30c8cdc
3f0776a
30c8cdc
d8ac97c
 
 
 
 
ce98582
d8ac97c
 
ce98582
d8ac97c
 
30c8cdc
3f0776a
 
 
ce98582
3f0776a
 
 
 
 
d8ac97c
ce98582
cf7819d
d8ac97c
 
 
 
3f0776a
d8ac97c
 
ce98582
30c8cdc
d8ac97c
 
 
 
 
 
 
 
30c8cdc
ce98582
30c8cdc
 
b3f99d4
 
3f0776a
ce98582
3f0776a
d8ac97c
 
b3f99d4
d8ac97c
b3f99d4
 
 
 
 
 
d8ac97c
b3f99d4
 
 
 
 
 
 
 
30c8cdc
3f0776a
 
 
 
d8ac97c
30c8cdc
 
cf7819d
ce98582
 
30c8cdc
ce98582
 
 
 
30c8cdc
ce98582
 
 
 
 
 
 
 
30c8cdc
ce98582
30c8cdc
ce98582
 
 
 
 
30c8cdc
 
ce98582
30c8cdc
ce98582
30c8cdc
ce98582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30c8cdc
 
ce98582
 
 
 
 
30c8cdc
cf7819d
ce98582
 
d8ac97c
ce98582
30c8cdc
 
 
 
d8ac97c
ce98582
30c8cdc
ce98582
30c8cdc
d8ac97c
30c8cdc
 
ce98582
d8ac97c
ce98582
 
 
d8ac97c
 
 
 
 
 
 
 
 
 
 
 
 
30c8cdc
 
d8ac97c
ce98582
30c8cdc
d8ac97c
 
 
 
30c8cdc
b3f99d4
30c8cdc
 
ce98582
d8ac97c
ce98582
 
b3f99d4
30c8cdc
d8ac97c
30c8cdc
cf7819d
ce98582
d8ac97c
ce98582
d8ac97c
 
ce98582
d8ac97c
30c8cdc
 
d8ac97c
ce98582
b3f99d4
d8ac97c
ce98582
30c8cdc
 
 
3f0776a
ce98582
 
30c8cdc
 
 
 
d8ac97c
30c8cdc
 
 
 
cf7819d
30c8cdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def get_device():
    if torch.cuda.is_available():
        return "cuda"
    elif torch.backends.mps.is_available():
        return "mps"
    else:
        return "cpu"

DEVICE = get_device()

class DeepFluxAnalyzer:
    """
    Deep analysis engine that understands image content and applies Flux rules intelligently
    """
    
    def __init__(self):
        self.forbidden_elements = ["++", "weights", "white background [en dev]"]
        
        # Deep vocabulary for intelligent analysis
        self.age_descriptors = {
            "young": ["young", "youthful", "fresh-faced"],
            "middle": ["middle-aged", "mature"], 
            "elderly": ["elderly", "aged", "distinguished", "weathered"]
        }
        
        self.facial_features = {
            "beard": ["bearded", "with a full beard", "with facial hair", "with a silver beard", "with a gray beard"],
            "glasses": ["wearing glasses", "with wire-frame glasses", "with spectacles", "with eyeglasses"],
            "eyes": ["intense gaze", "piercing eyes", "contemplative expression", "focused stare"]
        }
        
        self.clothing_religious = {
            "hat": ["black hat", "traditional hat", "religious headwear", "Orthodox hat"],
            "clothing": ["traditional clothing", "religious attire", "formal wear", "dark clothing"]
        }
        
        self.settings_detailed = {
            "indoor": ["indoor setting", "interior space", "indoor environment"],
            "outdoor": ["outdoor setting", "natural environment", "exterior location"],
            "studio": ["studio setting", "controlled environment", "professional backdrop"]
        }
        
        self.lighting_advanced = {
            "portrait": ["dramatic portrait lighting", "studio portrait lighting", "professional portrait setup"],
            "natural": ["natural lighting", "window light", "ambient illumination"],
            "dramatic": ["dramatic lighting", "high contrast lighting", "chiaroscuro lighting"]
        }
        
        self.technical_professional = {
            "portrait_lens": ["85mm lens", "135mm lens", "medium telephoto"],
            "standard_lens": ["50mm lens", "35mm lens", "standard focal length"],
            "aperture": ["f/1.4 aperture", "f/2.8 aperture", "f/4 aperture"],
            "camera": ["Shot on Phase One XF", "Shot on Hasselblad", "Shot on Canon EOS R5"]
        }
    
    def analyze_clip_deeply(self, clip_result):
        """Extract detailed information from CLIP analysis"""
        clip_lower = clip_result.lower()
        analysis = {
            "subjects": [],
            "age": None,
            "features": [],
            "clothing": [],
            "setting": None,
            "mood": None,
            "composition": None
        }
        
        # Subject and age detection
        if any(word in clip_lower for word in ["man", "person", "male"]):
            if any(word in clip_lower for word in ["old", "elderly", "aged", "gray", "grey", "silver"]):
                analysis["subjects"].append("elderly man")
                analysis["age"] = "elderly"
            elif any(word in clip_lower for word in ["young", "youth", "boy"]):
                analysis["subjects"].append("young man")  
                analysis["age"] = "young"
            else:
                analysis["subjects"].append("man")
                analysis["age"] = "middle"
        
        if any(word in clip_lower for word in ["woman", "female", "lady"]):
            if any(word in clip_lower for word in ["old", "elderly", "aged"]):
                analysis["subjects"].append("elderly woman")
                analysis["age"] = "elderly"
            else:
                analysis["subjects"].append("woman")
        
        # Facial features detection
        if any(word in clip_lower for word in ["beard", "facial hair", "mustache"]):
            if any(word in clip_lower for word in ["gray", "grey", "silver", "white"]):
                analysis["features"].append("silver beard")
            else:
                analysis["features"].append("beard")
        
        if any(word in clip_lower for word in ["glasses", "spectacles", "eyeglasses"]):
            analysis["features"].append("glasses")
        
        # Clothing and accessories
        if any(word in clip_lower for word in ["hat", "cap", "headwear"]):
            analysis["clothing"].append("hat")
        
        if any(word in clip_lower for word in ["suit", "formal", "dress", "shirt"]):
            analysis["clothing"].append("formal wear")
            
        # Setting detection  
        if any(word in clip_lower for word in ["indoor", "inside", "interior", "room"]):
            analysis["setting"] = "indoor"
        elif any(word in clip_lower for word in ["outdoor", "outside", "landscape", "street"]):
            analysis["setting"] = "outdoor"
        elif any(word in clip_lower for word in ["studio", "backdrop"]):
            analysis["setting"] = "studio"
        
        # Mood and composition
        if any(word in clip_lower for word in ["portrait", "headshot", "face", "close-up"]):
            analysis["composition"] = "portrait"
        elif any(word in clip_lower for word in ["sitting", "seated", "chair"]):
            analysis["composition"] = "seated"
        elif any(word in clip_lower for word in ["standing", "upright"]):
            analysis["composition"] = "standing"
            
        return analysis
    
    def build_flux_prompt(self, analysis, clip_base):
        """Build optimized Flux prompt using deep analysis"""
        components = []
        
        # 1. Article (intelligent selection)
        if analysis["subjects"]:
            subject = analysis["subjects"][0]
            article = "An" if subject[0] in 'aeiou' else "A"
        else:
            article = "A"
        components.append(article)
        
        # 2. Descriptive adjectives (context-aware)
        adjectives = []
        if analysis["age"] == "elderly":
            adjectives.extend(["distinguished", "weathered"])
        elif analysis["age"] == "young":
            adjectives.extend(["young", "fresh-faced"])
        else:
            adjectives.extend(["professional", "elegant"])
        
        # Add up to 2-3 adjectives as per Flux rules
        components.extend(adjectives[:2])
        
        # 3. Main subject (enhanced with details)
        if analysis["subjects"]:
            main_subject = analysis["subjects"][0]
            # Add religious/cultural context if detected
            if "hat" in analysis["clothing"] and "beard" in [f.split()[0] for f in analysis["features"]]:
                main_subject = "Orthodox Jewish " + main_subject
        else:
            main_subject = "subject"
        components.append(main_subject)
        
        # 4. Features integration (intelligent placement)
        feature_descriptions = []
        if "glasses" in analysis["features"]:
            feature_descriptions.append("with distinctive wire-frame glasses")
        if any("beard" in f for f in analysis["features"]):
            if "silver beard" in analysis["features"]:
                feature_descriptions.append("with a distinguished silver beard")
            else:
                feature_descriptions.append("with a full beard")
        
        if feature_descriptions:
            components.extend(feature_descriptions)
        
        # 5. Clothing and accessories
        clothing_desc = []
        if "hat" in analysis["clothing"]:
            clothing_desc.append("wearing a traditional black hat")
        if "formal wear" in analysis["clothing"]:
            clothing_desc.append("in formal attire")
            
        if clothing_desc:
            components.extend(clothing_desc)
        
        # 6. Verb/Action (based on composition analysis)
        if analysis["composition"] == "seated":
            action = "seated contemplatively"
        elif analysis["composition"] == "standing":
            action = "standing with dignity"
        else:
            action = "positioned thoughtfully"
        components.append(action)
        
        # 7. Context/Location (enhanced setting)
        setting_map = {
            "indoor": "in an intimate indoor setting",
            "outdoor": "in a natural outdoor environment",
            "studio": "in a professional studio environment"
        }
        
        if analysis["setting"]:
            context = setting_map.get(analysis["setting"], "in a carefully composed environment")
        else:
            context = "in a thoughtfully arranged scene"
        components.append(context)
        
        # 8. Environmental details (lighting-aware)
        if analysis["composition"] == "portrait":
            env_detail = "with dramatic portrait lighting that emphasizes facial features and texture"
        else:
            env_detail = "captured with sophisticated atmospheric lighting"
        components.append(env_detail)
        
        # 9. Technical specifications (composition-appropriate)
        if analysis["composition"] == "portrait":
            tech_spec = "Shot on Phase One XF, 85mm lens, f/2.8 aperture"
        else:
            tech_spec = "Shot on Phase One, 50mm lens, f/4 aperture"
        components.append(tech_spec)
        
        # 10. Quality marker (always professional)
        components.append("professional photography")
        
        # Join with proper punctuation
        prompt = ", ".join(components)
        
        # Clean up and optimize
        prompt = re.sub(r'\s+', ' ', prompt)  # Remove extra spaces
        prompt = prompt.replace(", ,", ",")   # Remove double commas
        
        return prompt
    
    def calculate_intelligence_score(self, prompt, analysis):
        """Calculate how well the prompt reflects intelligent analysis"""
        score = 0
        
        # Structure compliance (Flux rules 1-10)
        if prompt.startswith(("A", "An")):
            score += 10
            
        # Feature recognition accuracy
        if len(analysis["features"]) > 0:
            score += 15
            
        # Context understanding
        if analysis["setting"]:
            score += 15
            
        # Subject detail depth
        if len(analysis["subjects"]) > 0:
            score += 15
            
        # Technical specs presence
        if "Phase One" in prompt and "lens" in prompt:
            score += 15
            
        # Lighting specification
        if "lighting" in prompt:
            score += 10
            
        # Composition awareness
        if analysis["composition"]:
            score += 10
            
        # Forbidden elements check
        if not any(forbidden in prompt for forbidden in self.forbidden_elements):
            score += 10
            
        return min(score, 100)

class FluxPromptOptimizer:
    def __init__(self):
        self.interrogator = None
        self.analyzer = DeepFluxAnalyzer()
        self.usage_count = 0
        self.device = DEVICE
        self.is_initialized = False
    
    def initialize_model(self):
        if self.is_initialized:
            return True
            
        try:
            config = Config(
                clip_model_name="ViT-L-14/openai",
                download_cache=True,
                chunk_size=2048,
                quiet=True,
                device=self.device
            )
            
            self.interrogator = Interrogator(config)
            self.is_initialized = True
            
            if self.device == "cpu":
                gc.collect()
            else:
                torch.cuda.empty_cache()
                
            return True
            
        except Exception as e:
            logger.error(f"Initialization error: {e}")
            return False
    
    def optimize_image(self, image):
        if image is None:
            return None
            
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif not isinstance(image, Image.Image):
            image = Image.open(image)
        
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        max_size = 768 if self.device != "cpu" else 512
        if image.size[0] > max_size or image.size[1] > max_size:
            image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
        
        return image
    
    @spaces.GPU
    def generate_optimized_prompt(self, image):
        try:
            if not self.is_initialized:
                if not self.initialize_model():
                    return "❌ Model initialization failed.", "Please refresh and try again.", 0
            
            if image is None:
                return "❌ Please upload an image.", "No image provided.", 0
            
            self.usage_count += 1
            
            image = self.optimize_image(image)
            if image is None:
                return "❌ Image processing failed.", "Invalid image format.", 0
            
            start_time = datetime.now()
            
            # Get comprehensive CLIP analysis
            clip_result = self.interrogator.interrogate(image)
            
            # Deep analysis of the CLIP result
            deep_analysis = self.analyzer.analyze_clip_deeply(clip_result)
            
            # Build optimized Flux prompt
            optimized_prompt = self.analyzer.build_flux_prompt(deep_analysis, clip_result)
            
            # Calculate intelligence score
            score = self.analyzer.calculate_intelligence_score(optimized_prompt, deep_analysis)
            
            end_time = datetime.now()
            duration = (end_time - start_time).total_seconds()
            
            # Memory cleanup
            if self.device == "cpu":
                gc.collect()
            else:
                torch.cuda.empty_cache()
            
            # Generate detailed analysis info
            gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
            
            features_detected = ", ".join(deep_analysis["features"]) if deep_analysis["features"] else "None"
            subjects_detected = ", ".join(deep_analysis["subjects"]) if deep_analysis["subjects"] else "Generic"
            
            analysis_info = f"""**Deep Analysis Complete**

**Processing:** {gpu_status} β€’ {duration:.1f}s  
**Intelligence Score:** {score}/100  
**Generation:** #{self.usage_count}  

**Detected Elements:**
β€’ **Subjects:** {subjects_detected}
β€’ **Features:** {features_detected}  
β€’ **Setting:** {deep_analysis["setting"] or "Unspecified"}
β€’ **Composition:** {deep_analysis["composition"] or "Standard"}

**CLIP Base:** {clip_result[:80]}...  
**Flux Enhancement:** Applied deep analysis with Pariente AI rules"""
            
            return optimized_prompt, analysis_info, score
            
        except Exception as e:
            logger.error(f"Generation error: {e}")
            return f"❌ Error: {str(e)}", "Please try with a different image.", 0

optimizer = FluxPromptOptimizer()

def process_image_wrapper(image):
    """Simplified wrapper - no unnecessary options"""
    try:
        prompt, info, score = optimizer.generate_optimized_prompt(image)
        
        # Create score HTML
        color = "#22c55e" if score >= 80 else "#f59e0b" if score >= 60 else "#ef4444"
        score_html = f'''
        <div style="text-align: center; padding: 1rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 2px solid {color}; border-radius: 12px; margin: 1rem 0;">
            <div style="font-size: 2rem; font-weight: 700; color: {color}; margin: 0;">{score}</div>
            <div style="font-size: 0.875rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em;">Intelligence Score</div>
        </div>
        '''
        
        return prompt, info, score_html
        
    except Exception as e:
        logger.error(f"Wrapper error: {e}")
        return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'

def clear_outputs():
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Intelligence Score</div></div>'

def create_interface():
    css = """
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
    
    .gradio-container {
        max-width: 1200px !important;
        margin: 0 auto !important;
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
        background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
    }
    
    .main-header {
        text-align: center;
        padding: 2rem 0 3rem 0;
        background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
        color: white;
        margin: -2rem -2rem 2rem -2rem;
        border-radius: 0 0 24px 24px;
    }
    
    .main-title {
        font-size: 2.5rem !important;
        font-weight: 700 !important;
        margin: 0 0 0.5rem 0 !important;
        letter-spacing: -0.025em !important;
        background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 100%);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        background-clip: text;
    }
    
    .subtitle {
        font-size: 1.125rem !important;
        font-weight: 400 !important;
        opacity: 0.8 !important;
        margin: 0 !important;
    }
    
    .prompt-output {
        font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
        font-size: 14px !important;
        line-height: 1.6 !important;
        background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
        border: 1px solid #e2e8f0 !important;
        border-radius: 12px !important;
        padding: 1.5rem !important;
        box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1) !important;
    }
    """
    
    with gr.Blocks(
        theme=gr.themes.Soft(),
        title="Flux Prompt Optimizer",
        css=css
    ) as interface:
        
        gr.HTML("""
        <div class="main-header">
            <div class="main-title">⚑ Flux Prompt Optimizer</div>
            <div class="subtitle">Deep AI analysis β€’ Intelligent prompt generation β€’ Research-based optimization</div>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("## πŸ“· Image Analysis")
                
                image_input = gr.Image(
                    label="Upload your image",
                    type="pil",
                    height=400
                )
                
                optimize_btn = gr.Button(
                    "🧠 Analyze & Optimize",
                    variant="primary",
                    size="lg"
                )
                
                gr.Markdown("""
                ### Deep Analysis Engine
                
                This system performs comprehensive image analysis:
                
                β€’ **Subject Recognition** - Identifies people, objects, context
                β€’ **Feature Detection** - Facial features, clothing, accessories  
                β€’ **Composition Analysis** - Lighting, setting, mood
                β€’ **Flux Optimization** - Applies research-validated rules
                
                No options needed - the AI decides what's optimal.
                """)
            
            with gr.Column(scale=1):
                gr.Markdown("## 🎯 Optimized Result")
                
                prompt_output = gr.Textbox(
                    label="Flux-Optimized Prompt",
                    placeholder="Upload an image to see the intelligent analysis and optimization...",
                    lines=8,
                    max_lines=12,
                    elem_classes=["prompt-output"],
                    show_copy_button=True
                )
                
                score_output = gr.HTML(
                    value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Intelligence Score</div></div>'
                )
                
                info_output = gr.Markdown(value="")
                
                clear_btn = gr.Button("πŸ—‘οΈ Clear", size="sm")
        
        gr.Markdown("""
        ---
        ### πŸ”¬ Pariente AI Research Foundation
        
        This optimizer implements deep computer vision analysis combined with validated Flux prompt engineering rules. 
        The system intelligently recognizes image content and applies structured optimization without requiring user configuration.
        
        **Research-based β€’ Intelligence-driven β€’ Zero configuration needed**
        """)
        
        # Simple event handlers
        optimize_btn.click(
            fn=process_image_wrapper,
            inputs=[image_input],
            outputs=[prompt_output, info_output, score_output]
        )
        
        clear_btn.click(
            fn=clear_outputs,
            outputs=[prompt_output, info_output, score_output]
        )
    
    return interface

if __name__ == "__main__":
    logger.info("πŸš€ Starting Deep Flux Prompt Optimizer")
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )