Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,827 Bytes
7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 6715d2b 7cdab93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
"""
Configuration file for Frame 0 Laboratory for MIA
BAGEL 7B integration with FLUX prompt optimization
"""
import os
import torch
from typing import Dict, Any
# Application Configuration
APP_CONFIG = {
"title": "Frame 0 Laboratory for MIA",
"description": "Advanced image analysis with BAGEL 7B and FLUX prompt optimization",
"version": "2.0.0",
"author": "Frame 0 Laboratory for MIA"
}
# BAGEL Model Configuration
BAGEL_CONFIG = {
"model_repo": "ByteDance-Seed/BAGEL-7B-MoT",
"local_model_path": "./model",
"cache_dir": "./model/cache",
"download_patterns": ["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
# Model parameters
"dtype": torch.bfloat16,
"device_map_strategy": "auto",
"max_memory_per_gpu": "80GiB",
"offload_buffers": True,
"force_hooks": True,
# Image processing
"vae_transform_size": (1024, 512, 16),
"vit_transform_size": (980, 224, 14),
# Inference parameters
"max_new_tokens": 512,
"temperature": 0.7,
"top_p": 0.9,
"do_sample": True
}
# Device Configuration for ZeroGPU
def get_device_config() -> Dict[str, Any]:
"""Determine optimal device configuration for BAGEL"""
device_config = {
"device": "cpu",
"use_gpu": False,
"gpu_count": 0,
"memory_efficient": True
}
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
device_config.update({
"device": "cuda",
"use_gpu": True,
"gpu_count": gpu_count,
"gpu_memory_gb": torch.cuda.get_device_properties(0).total_memory / 1e9,
"multi_gpu": gpu_count > 1
})
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device_config.update({
"device": "mps",
"use_gpu": True,
"gpu_count": 1
})
return device_config
# BAGEL Device Mapping Configuration
def get_bagel_device_map(gpu_count: int) -> Dict[str, str]:
"""Configure device mapping for BAGEL model"""
# Same device modules that need to be on the same GPU
same_device_modules = [
'language_model.model.embed_tokens',
'time_embedder',
'latent_pos_embed',
'vae2llm',
'llm2vae',
'connector',
'vit_pos_embed'
]
device_map = {}
if gpu_count == 1:
# Single GPU configuration
for module in same_device_modules:
device_map[module] = "cuda:0"
else:
# Multi-GPU configuration - keep critical modules on same device
first_device = "cuda:0"
for module in same_device_modules:
device_map[module] = first_device
return device_map
# Processing Configuration
PROCESSING_CONFIG = {
"max_image_size": 1024,
"image_quality": 95,
"supported_formats": [".jpg", ".jpeg", ".png", ".webp"],
"batch_size": 1,
"timeout_seconds": 120 # Increased for BAGEL processing
}
# FLUX Prompt Rules
FLUX_RULES = {
"remove_patterns": [
r',\s*trending on artstation',
r',\s*trending on [^,]+',
r',\s*\d+k\s*',
r',\s*\d+k resolution',
r',\s*artstation',
r',\s*concept art',
r',\s*digital art',
r',\s*by greg rutkowski',
],
"camera_configs": {
"portrait": ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography",
"landscape": ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography",
"street": ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography",
"default": ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
},
"lighting_enhancements": {
"dramatic": ", dramatic cinematic lighting",
"portrait": ", professional studio lighting with subtle rim light",
"default": ", masterful natural lighting"
}
}
# Scoring Configuration
SCORING_CONFIG = {
"max_score": 100,
"score_weights": {
"prompt_quality": 0.3,
"technical_details": 0.25,
"artistic_value": 0.25,
"flux_optimization": 0.2
},
"grade_thresholds": {
95: {"grade": "LEGENDARY", "color": "#059669"},
90: {"grade": "EXCELLENT", "color": "#10b981"},
80: {"grade": "VERY GOOD", "color": "#22c55e"},
70: {"grade": "GOOD", "color": "#f59e0b"},
60: {"grade": "FAIR", "color": "#f97316"},
0: {"grade": "NEEDS WORK", "color": "#ef4444"}
}
}
# Environment Configuration
ENVIRONMENT = {
"is_spaces": os.getenv("SPACE_ID") is not None,
"is_local": os.getenv("SPACE_ID") is None,
"log_level": os.getenv("LOG_LEVEL", "INFO"),
"debug_mode": os.getenv("DEBUG", "false").lower() == "true",
"space_id": os.getenv("SPACE_ID", ""),
"space_author": os.getenv("SPACE_AUTHOR_NAME", "")
}
# BAGEL Inference Prompts
BAGEL_PROMPTS = {
"image_analysis": "Describe this image in detail, including objects, people, setting, mood, and visual elements:",
"flux_prompt": "Generate a detailed FLUX prompt for this image, focusing on photographic and artistic elements:",
"detailed_description": "Provide a comprehensive analysis of this image including composition, lighting, colors, and artistic style:",
}
# Flash Attention Installation Command
FLASH_ATTN_INSTALL = {
"command": "pip install flash-attn --no-build-isolation",
"env": {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
"shell": True
}
# Export main configurations
__all__ = [
"APP_CONFIG",
"BAGEL_CONFIG",
"get_device_config",
"get_bagel_device_map",
"PROCESSING_CONFIG",
"FLUX_RULES",
"SCORING_CONFIG",
"ENVIRONMENT",
"BAGEL_PROMPTS",
"FLASH_ATTN_INSTALL"
] |