""" Main processing logic for FLUX Prompt Optimizer Handles image analysis, prompt optimization, and scoring """ import logging import time from typing import Tuple, Dict, Any, Optional from PIL import Image from datetime import datetime from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config from utils import ( optimize_image, validate_image, apply_flux_rules, calculate_prompt_score, get_score_grade, format_analysis_report, clean_memory, safe_execute ) from models import analyze_image logger = logging.getLogger(__name__) class FluxOptimizer: """Main optimizer class for FLUX prompt generation""" def __init__(self, model_name: str = None): self.model_name = model_name self.device_config = get_device_config() self.processing_stats = { "total_processed": 0, "successful_analyses": 0, "failed_analyses": 0, "average_processing_time": 0.0 } logger.info(f"FluxOptimizer initialized - Device: {self.device_config['device']}") def process_image(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]: """ Complete image processing pipeline Args: image: Input image (PIL, numpy array, or file path) Returns: Tuple of (optimized_prompt, analysis_report, score_html, metadata) """ start_time = time.time() metadata = { "processing_time": 0.0, "success": False, "model_used": self.model_name or "auto", "device": self.device_config["device"], "error": None } try: # Step 1: Validate and optimize input image logger.info("Starting image processing pipeline...") if not validate_image(image): error_msg = "Invalid or unsupported image format" logger.error(error_msg) return self._create_error_response(error_msg, metadata) optimized_image = optimize_image(image) if optimized_image is None: error_msg = "Image optimization failed" logger.error(error_msg) return self._create_error_response(error_msg, metadata) logger.info(f"Image optimized to size: {optimized_image.size}") # Step 2: Analyze image with selected model logger.info("Running image analysis...") analysis_success, analysis_result = safe_execute( analyze_image, optimized_image, self.model_name ) if not analysis_success: error_msg = f"Image analysis failed: {analysis_result}" logger.error(error_msg) return self._create_error_response(error_msg, metadata) description, analysis_metadata = analysis_result logger.info(f"Analysis complete: {len(description)} characters") # Step 3: Apply FLUX optimization rules logger.info("Applying FLUX optimization rules...") optimized_prompt = apply_flux_rules(description) if not optimized_prompt: optimized_prompt = "A professional photograph" logger.warning("Empty prompt after optimization, using fallback") # Step 4: Calculate quality score logger.info("Calculating quality score...") score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata) grade_info = get_score_grade(score) # Step 5: Generate analysis report processing_time = time.time() - start_time metadata.update({ "processing_time": processing_time, "success": True, "prompt_length": len(optimized_prompt), "score": score, "grade": grade_info["grade"], "analysis_metadata": analysis_metadata }) analysis_report = self._generate_detailed_report( optimized_prompt, analysis_metadata, score, score_breakdown, processing_time ) # Step 6: Create score HTML score_html = self._generate_score_html(score, grade_info) # Update statistics self._update_stats(processing_time, True) logger.info(f"Processing complete - Score: {score}, Time: {processing_time:.1f}s") return optimized_prompt, analysis_report, score_html, metadata except Exception as e: processing_time = time.time() - start_time error_msg = f"Unexpected error in processing pipeline: {str(e)}" logger.error(error_msg, exc_info=True) metadata.update({ "processing_time": processing_time, "error": error_msg }) self._update_stats(processing_time, False) return self._create_error_response(error_msg, metadata) finally: # Always clean up memory clean_memory() def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]: """Create standardized error response""" error_prompt = "❌ Processing failed" error_report = f"**Error:** {error_msg}\n\nPlease try with a different image or check the logs for more details." error_html = self._generate_score_html(0, get_score_grade(0)) metadata["success"] = False metadata["error"] = error_msg return error_prompt, error_report, error_html, metadata def _generate_detailed_report(self, prompt: str, analysis_metadata: Dict[str, Any], score: int, breakdown: Dict[str, int], processing_time: float) -> str: """Generate comprehensive analysis report""" model_used = analysis_metadata.get("model", "Unknown") device_used = analysis_metadata.get("device", self.device_config["device"]) confidence = analysis_metadata.get("confidence", 0.0) # Device status emoji device_emoji = "⚡" if device_used == "cuda" else "💻" report = f"""**Analysis Complete** **Processing:** {device_emoji} {device_used.upper()} • {processing_time:.1f}s • Model: {model_used} **Score:** {score}/100 • Confidence: {confidence:.0%} **Score Breakdown:** • **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/30 - Content detail and description • **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and photography settings • **Artistic Value:** {breakdown.get('artistic_value', 0)}/25 - Creative elements • **FLUX Optimization:** {breakdown.get('flux_optimization', 0)}/20 - Platform optimizations **Analysis Summary:** **Description Length:** {len(prompt)} characters **Model Used:** {analysis_metadata.get('model', 'N/A')} **Applied Optimizations:** ✅ Camera settings added ✅ Lighting configuration applied ✅ Technical parameters optimized ✅ FLUX rules implemented ✅ Content cleaned and enhanced **Performance:** • **Processing Time:** {processing_time:.1f}s • **Device:** {device_used.upper()} • **Model Confidence:** {confidence:.0%} **Frame 0 Laboratory for MIA**""" return report def _generate_score_html(self, score: int, grade_info: Dict[str, str]) -> str: """Generate HTML for score display""" html = f'''