Spaces:
Running
on
Zero
Running
on
Zero
Update optimizer.py
Browse files- optimizer.py +119 -178
optimizer.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
Ultra Supreme Optimizer - Main optimization engine for image analysis
|
| 3 |
-
VERSIÓN
|
| 4 |
"""
|
| 5 |
|
| 6 |
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
|
|
@@ -14,7 +14,7 @@ from typing import Tuple, Dict, Any, Optional
|
|
| 14 |
import torch
|
| 15 |
import numpy as np
|
| 16 |
from PIL import Image
|
| 17 |
-
from
|
| 18 |
|
| 19 |
from analyzer import UltraSupremeAnalyzer
|
| 20 |
|
|
@@ -25,12 +25,12 @@ class UltraSupremeOptimizer:
|
|
| 25 |
"""Main optimizer class for ultra supreme image analysis"""
|
| 26 |
|
| 27 |
def __init__(self):
|
| 28 |
-
self.
|
|
|
|
| 29 |
self.analyzer = UltraSupremeAnalyzer()
|
| 30 |
self.usage_count = 0
|
| 31 |
self.device = self._get_device()
|
| 32 |
self.is_initialized = False
|
| 33 |
-
# NO inicializar modelo aquí - hacerlo lazy
|
| 34 |
|
| 35 |
@staticmethod
|
| 36 |
def _get_device() -> str:
|
|
@@ -43,31 +43,37 @@ class UltraSupremeOptimizer:
|
|
| 43 |
return "cpu"
|
| 44 |
|
| 45 |
def initialize_model(self) -> bool:
|
| 46 |
-
"""Initialize
|
| 47 |
if self.is_initialized:
|
| 48 |
return True
|
| 49 |
|
| 50 |
try:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
self.is_initialized = True
|
| 62 |
|
| 63 |
# Clean up memory after initialization
|
| 64 |
gc.collect()
|
| 65 |
|
| 66 |
-
logger.info("
|
| 67 |
return True
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
-
logger.error(f"
|
| 71 |
return False
|
| 72 |
|
| 73 |
def optimize_image(self, image: Any) -> Optional[Image.Image]:
|
|
@@ -86,8 +92,8 @@ class UltraSupremeOptimizer:
|
|
| 86 |
if image.mode != 'RGB':
|
| 87 |
image = image.convert('RGB')
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
max_size =
|
| 91 |
if image.size[0] > max_size or image.size[1] > max_size:
|
| 92 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 93 |
|
|
@@ -98,7 +104,7 @@ class UltraSupremeOptimizer:
|
|
| 98 |
return None
|
| 99 |
|
| 100 |
def apply_flux_rules(self, base_prompt: str) -> str:
|
| 101 |
-
"""Aplica las reglas de Flux a un prompt base
|
| 102 |
|
| 103 |
# Limpiar el prompt de elementos no deseados
|
| 104 |
cleanup_patterns = [
|
|
@@ -148,110 +154,88 @@ class UltraSupremeOptimizer:
|
|
| 148 |
|
| 149 |
return final_prompt
|
| 150 |
|
| 151 |
-
def _prepare_models_for_gpu(self):
|
| 152 |
-
"""Prepara los modelos para GPU con la precisión correcta"""
|
| 153 |
-
try:
|
| 154 |
-
if hasattr(self.interrogator, 'caption_model'):
|
| 155 |
-
self.interrogator.caption_model = self.interrogator.caption_model.half().to("cuda")
|
| 156 |
-
|
| 157 |
-
if hasattr(self.interrogator, 'clip_model'):
|
| 158 |
-
self.interrogator.clip_model = self.interrogator.clip_model.half().to("cuda")
|
| 159 |
-
|
| 160 |
-
if hasattr(self.interrogator, 'blip_model'):
|
| 161 |
-
self.interrogator.blip_model = self.interrogator.blip_model.half().to("cuda")
|
| 162 |
-
|
| 163 |
-
self.interrogator.config.device = "cuda"
|
| 164 |
-
logger.info("Models prepared for GPU with FP16")
|
| 165 |
-
|
| 166 |
-
except Exception as e:
|
| 167 |
-
logger.error(f"Error preparing models for GPU: {e}")
|
| 168 |
-
raise
|
| 169 |
-
|
| 170 |
-
def _prepare_models_for_cpu(self):
|
| 171 |
-
"""Prepara los modelos para CPU con float32"""
|
| 172 |
-
try:
|
| 173 |
-
if hasattr(self.interrogator, 'caption_model'):
|
| 174 |
-
self.interrogator.caption_model = self.interrogator.caption_model.float().to("cpu")
|
| 175 |
-
|
| 176 |
-
if hasattr(self.interrogator, 'clip_model'):
|
| 177 |
-
self.interrogator.clip_model = self.interrogator.clip_model.float().to("cpu")
|
| 178 |
-
|
| 179 |
-
if hasattr(self.interrogator, 'blip_model'):
|
| 180 |
-
self.interrogator.blip_model = self.interrogator.blip_model.float().to("cpu")
|
| 181 |
-
|
| 182 |
-
self.interrogator.config.device = "cpu"
|
| 183 |
-
logger.info("Models prepared for CPU with FP32")
|
| 184 |
-
|
| 185 |
-
except Exception as e:
|
| 186 |
-
logger.error(f"Error preparing models for CPU: {e}")
|
| 187 |
-
raise
|
| 188 |
-
|
| 189 |
@spaces.GPU(duration=60)
|
| 190 |
-
def
|
| 191 |
-
"""
|
| 192 |
try:
|
| 193 |
-
#
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
#
|
| 239 |
-
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
full_prompt = self.interrogator.interrogate(image)
|
| 243 |
-
clip_fast = self.interrogator.interrogate_fast(image)
|
| 244 |
-
clip_classic = self.interrogator.interrogate_classic(image)
|
| 245 |
|
| 246 |
return full_prompt, clip_fast, clip_classic
|
| 247 |
|
| 248 |
except Exception as e:
|
| 249 |
-
logger.error(f"
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
| 253 |
"""
|
| 254 |
-
Generate ultra supreme prompt from image usando
|
| 255 |
|
| 256 |
Returns:
|
| 257 |
Tuple of (prompt, analysis_info, score, breakdown)
|
|
@@ -275,30 +259,30 @@ class UltraSupremeOptimizer:
|
|
| 275 |
|
| 276 |
start_time = datetime.now()
|
| 277 |
|
| 278 |
-
logger.info("ULTRA SUPREME ANALYSIS - Starting
|
| 279 |
|
| 280 |
-
# Ejecutar inferencia
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
full_prompt = "A photograph"
|
| 287 |
-
|
| 288 |
-
|
| 289 |
|
| 290 |
-
logger.info(f"
|
| 291 |
|
| 292 |
-
#
|
| 293 |
logger.info("Running multi-model ultra supreme analysis...")
|
| 294 |
ultra_analysis = self.analyzer.ultra_supreme_analysis(
|
| 295 |
-
image,
|
| 296 |
)
|
| 297 |
|
| 298 |
# Construir prompt mejorado basado en análisis completo
|
| 299 |
enhanced_prompt_parts = []
|
| 300 |
|
| 301 |
-
# Base prompt de
|
| 302 |
enhanced_prompt_parts.append(full_prompt)
|
| 303 |
|
| 304 |
# Agregar información demográfica si está disponible
|
|
@@ -339,7 +323,7 @@ class UltraSupremeOptimizer:
|
|
| 339 |
|
| 340 |
# Generate enhanced analysis report con datos de múltiples modelos
|
| 341 |
analysis_info = self._generate_ultra_analysis_report(
|
| 342 |
-
ultra_analysis, score, breakdown, duration
|
| 343 |
)
|
| 344 |
|
| 345 |
return optimized_prompt, analysis_info, score, breakdown
|
|
@@ -348,58 +332,9 @@ class UltraSupremeOptimizer:
|
|
| 348 |
logger.error(f"Ultra supreme generation error: {e}", exc_info=True)
|
| 349 |
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
| 350 |
|
| 351 |
-
def _detect_style(self, prompt: str) -> str:
|
| 352 |
-
"""Detecta el estilo principal del prompt"""
|
| 353 |
-
styles = {
|
| 354 |
-
"portrait": ["portrait", "person", "face", "headshot"],
|
| 355 |
-
"landscape": ["landscape", "mountain", "nature", "scenery"],
|
| 356 |
-
"street": ["street", "urban", "city"],
|
| 357 |
-
"artistic": ["artistic", "abstract", "conceptual"],
|
| 358 |
-
"dramatic": ["dramatic", "cinematic", "moody"]
|
| 359 |
-
}
|
| 360 |
-
|
| 361 |
-
prompt_lower = prompt.lower()
|
| 362 |
-
for style_name, keywords in styles.items():
|
| 363 |
-
if any(keyword in prompt_lower for keyword in keywords):
|
| 364 |
-
return style_name
|
| 365 |
-
|
| 366 |
-
return "general"
|
| 367 |
-
|
| 368 |
-
def _detect_subject(self, prompt: str) -> str:
|
| 369 |
-
"""Detecta el sujeto principal del prompt"""
|
| 370 |
-
if not prompt:
|
| 371 |
-
return "Unknown"
|
| 372 |
-
|
| 373 |
-
# Tomar las primeras palabras significativas
|
| 374 |
-
words = prompt.split(',')[0].split()
|
| 375 |
-
if len(words) > 3:
|
| 376 |
-
return ' '.join(words[:4])
|
| 377 |
-
return prompt.split(',')[0] if prompt else "Unknown"
|
| 378 |
-
|
| 379 |
-
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
|
| 380 |
-
"""Calcula el score basado en la calidad del prompt"""
|
| 381 |
-
score = 0
|
| 382 |
-
|
| 383 |
-
# Base score por longitud y riqueza
|
| 384 |
-
score += min(len(base_prompt) // 10, 25)
|
| 385 |
-
|
| 386 |
-
# Technical enhancement
|
| 387 |
-
if "Shot on" in optimized_prompt:
|
| 388 |
-
score += 25
|
| 389 |
-
|
| 390 |
-
# Lighting quality
|
| 391 |
-
if "lighting" in optimized_prompt.lower():
|
| 392 |
-
score += 25
|
| 393 |
-
|
| 394 |
-
# Professional quality
|
| 395 |
-
if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
|
| 396 |
-
score += 25
|
| 397 |
-
|
| 398 |
-
return min(score, 100)
|
| 399 |
-
|
| 400 |
def _generate_ultra_analysis_report(self, analysis: Dict[str, Any],
|
| 401 |
score: int, breakdown: Dict[str, int],
|
| 402 |
-
duration: float) -> str:
|
| 403 |
"""Generate ultra detailed analysis report with multi-model results"""
|
| 404 |
|
| 405 |
device_used = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -457,9 +392,12 @@ class UltraSupremeOptimizer:
|
|
| 457 |
# Intelligence metrics
|
| 458 |
metrics = analysis["intelligence_metrics"]
|
| 459 |
|
|
|
|
|
|
|
|
|
|
| 460 |
analysis_info = f"""**🚀 ULTRA SUPREME MULTI-MODEL ANALYSIS COMPLETE**
|
| 461 |
-
**Processing:** {gpu_status} • {duration:.1f}s • Multi-Model Pipeline
|
| 462 |
-
**Ultra Score:** {score}/100 • Models:
|
| 463 |
|
| 464 |
**📊 BREAKDOWN:**
|
| 465 |
• Prompt Quality: {breakdown.get('prompt_quality', 0)}/25
|
|
@@ -467,6 +405,9 @@ class UltraSupremeOptimizer:
|
|
| 467 |
• Model Confidence: {breakdown.get('model_confidence', 0)}/25
|
| 468 |
• Feature Richness: {breakdown.get('feature_richness', 0)}/25
|
| 469 |
|
|
|
|
|
|
|
|
|
|
| 470 |
**🧠 DEEP ANALYSIS RESULTS:**
|
| 471 |
|
| 472 |
**👤 DEMOGRAPHICS & IDENTITY:**
|
|
@@ -491,9 +432,9 @@ class UltraSupremeOptimizer:
|
|
| 491 |
• **Technical Optimization:** {metrics['technical_optimization_score']}/100
|
| 492 |
|
| 493 |
**✨ MULTI-MODEL ADVANTAGES:**
|
|
|
|
| 494 |
✅ DeepFace: Accurate age, gender, emotion detection
|
| 495 |
✅ MediaPipe: Body pose and gesture analysis
|
| 496 |
-
✅ CLIP: Semantic understanding and context
|
| 497 |
✅ Transformers: Advanced emotion classification
|
| 498 |
✅ OpenCV: Robust face detection
|
| 499 |
|
|
|
|
| 1 |
"""
|
| 2 |
Ultra Supreme Optimizer - Main optimization engine for image analysis
|
| 3 |
+
VERSIÓN FLORENCE-2 - Usa Florence-2 en lugar de CLIP Interrogator
|
| 4 |
"""
|
| 5 |
|
| 6 |
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
|
|
|
|
| 14 |
import torch
|
| 15 |
import numpy as np
|
| 16 |
from PIL import Image
|
| 17 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 18 |
|
| 19 |
from analyzer import UltraSupremeAnalyzer
|
| 20 |
|
|
|
|
| 25 |
"""Main optimizer class for ultra supreme image analysis"""
|
| 26 |
|
| 27 |
def __init__(self):
|
| 28 |
+
self.processor = None
|
| 29 |
+
self.model = None
|
| 30 |
self.analyzer = UltraSupremeAnalyzer()
|
| 31 |
self.usage_count = 0
|
| 32 |
self.device = self._get_device()
|
| 33 |
self.is_initialized = False
|
|
|
|
| 34 |
|
| 35 |
@staticmethod
|
| 36 |
def _get_device() -> str:
|
|
|
|
| 43 |
return "cpu"
|
| 44 |
|
| 45 |
def initialize_model(self) -> bool:
|
| 46 |
+
"""Initialize Florence-2 model"""
|
| 47 |
if self.is_initialized:
|
| 48 |
return True
|
| 49 |
|
| 50 |
try:
|
| 51 |
+
logger.info("Loading Florence-2 model...")
|
| 52 |
+
|
| 53 |
+
# Load Florence-2 base model (you can also use 'microsoft/Florence-2-large' for better quality)
|
| 54 |
+
model_id = "microsoft/Florence-2-base"
|
| 55 |
+
|
| 56 |
+
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 57 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 58 |
+
model_id,
|
| 59 |
+
trust_remote_code=True,
|
| 60 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
| 61 |
)
|
| 62 |
|
| 63 |
+
# Keep model on CPU initially
|
| 64 |
+
self.model = self.model.to("cpu")
|
| 65 |
+
self.model.eval()
|
| 66 |
+
|
| 67 |
self.is_initialized = True
|
| 68 |
|
| 69 |
# Clean up memory after initialization
|
| 70 |
gc.collect()
|
| 71 |
|
| 72 |
+
logger.info("Florence-2 model initialized successfully")
|
| 73 |
return True
|
| 74 |
|
| 75 |
except Exception as e:
|
| 76 |
+
logger.error(f"Model initialization error: {e}")
|
| 77 |
return False
|
| 78 |
|
| 79 |
def optimize_image(self, image: Any) -> Optional[Image.Image]:
|
|
|
|
| 92 |
if image.mode != 'RGB':
|
| 93 |
image = image.convert('RGB')
|
| 94 |
|
| 95 |
+
# Florence-2 handles various sizes well, but let's be reasonable
|
| 96 |
+
max_size = 1024
|
| 97 |
if image.size[0] > max_size or image.size[1] > max_size:
|
| 98 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 99 |
|
|
|
|
| 104 |
return None
|
| 105 |
|
| 106 |
def apply_flux_rules(self, base_prompt: str) -> str:
|
| 107 |
+
"""Aplica las reglas de Flux a un prompt base"""
|
| 108 |
|
| 109 |
# Limpiar el prompt de elementos no deseados
|
| 110 |
cleanup_patterns = [
|
|
|
|
| 154 |
|
| 155 |
return final_prompt
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
@spaces.GPU(duration=60)
|
| 158 |
+
def run_florence_inference(self, image: Image.Image) -> Tuple[str, str, str]:
|
| 159 |
+
"""Run Florence-2 inference on GPU"""
|
| 160 |
try:
|
| 161 |
+
# Move model to GPU
|
| 162 |
+
self.model = self.model.to("cuda")
|
| 163 |
+
logger.info("Florence-2 model moved to GPU")
|
| 164 |
+
|
| 165 |
+
# Task prompts for different types of analysis
|
| 166 |
+
tasks = {
|
| 167 |
+
"detailed_caption": "<DETAILED_CAPTION>",
|
| 168 |
+
"more_detailed_caption": "<MORE_DETAILED_CAPTION>",
|
| 169 |
+
"caption": "<CAPTION>",
|
| 170 |
+
"dense_region_caption": "<DENSE_REGION_CAPTION>"
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
results = {}
|
| 174 |
+
|
| 175 |
+
# Run different captioning tasks
|
| 176 |
+
for task_name, task_prompt in tasks.items():
|
| 177 |
+
try:
|
| 178 |
+
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
|
| 179 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 180 |
+
|
| 181 |
+
with torch.cuda.amp.autocast(dtype=torch.float16):
|
| 182 |
+
generated_ids = self.model.generate(
|
| 183 |
+
input_ids=inputs["input_ids"],
|
| 184 |
+
pixel_values=inputs["pixel_values"],
|
| 185 |
+
max_new_tokens=1024,
|
| 186 |
+
num_beams=3,
|
| 187 |
+
do_sample=False
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 191 |
+
parsed = self.processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
| 192 |
+
|
| 193 |
+
# Extract the caption from the parsed result
|
| 194 |
+
if task_prompt in parsed:
|
| 195 |
+
results[task_name] = parsed[task_prompt]
|
| 196 |
+
else:
|
| 197 |
+
# Sometimes the result is directly in the parsed output
|
| 198 |
+
results[task_name] = str(parsed) if parsed else ""
|
| 199 |
+
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logger.warning(f"Error in {task_name}: {e}")
|
| 202 |
+
results[task_name] = ""
|
| 203 |
+
|
| 204 |
+
# Extract results
|
| 205 |
+
detailed_caption = results.get("detailed_caption", "")
|
| 206 |
+
more_detailed = results.get("more_detailed_caption", "")
|
| 207 |
+
caption = results.get("caption", "")
|
| 208 |
+
|
| 209 |
+
# Combine for a comprehensive description
|
| 210 |
+
if more_detailed:
|
| 211 |
+
full_prompt = more_detailed
|
| 212 |
+
elif detailed_caption:
|
| 213 |
+
full_prompt = detailed_caption
|
| 214 |
+
else:
|
| 215 |
+
full_prompt = caption
|
| 216 |
|
| 217 |
+
# Use different levels as our three outputs
|
| 218 |
+
clip_fast = caption if caption else "A photograph"
|
| 219 |
+
clip_classic = detailed_caption if detailed_caption else full_prompt
|
| 220 |
+
clip_best = more_detailed if more_detailed else full_prompt
|
| 221 |
|
| 222 |
+
logger.info(f"Florence-2 captions generated successfully")
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
return full_prompt, clip_fast, clip_classic
|
| 225 |
|
| 226 |
except Exception as e:
|
| 227 |
+
logger.error(f"Florence-2 inference error: {e}")
|
| 228 |
+
# Move model back to CPU to free GPU memory
|
| 229 |
+
self.model = self.model.to("cpu")
|
| 230 |
+
raise e
|
| 231 |
+
finally:
|
| 232 |
+
# Always move model back to CPU after inference
|
| 233 |
+
self.model = self.model.to("cpu")
|
| 234 |
+
torch.cuda.empty_cache()
|
| 235 |
|
| 236 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
| 237 |
"""
|
| 238 |
+
Generate ultra supreme prompt from image usando Florence-2
|
| 239 |
|
| 240 |
Returns:
|
| 241 |
Tuple of (prompt, analysis_info, score, breakdown)
|
|
|
|
| 259 |
|
| 260 |
start_time = datetime.now()
|
| 261 |
|
| 262 |
+
logger.info("ULTRA SUPREME ANALYSIS - Starting with Florence-2")
|
| 263 |
|
| 264 |
+
# Ejecutar inferencia Florence-2
|
| 265 |
+
try:
|
| 266 |
+
full_prompt, caption_fast, caption_detailed = self.run_florence_inference(image)
|
| 267 |
+
except Exception as e:
|
| 268 |
+
logger.error(f"Florence-2 failed: {e}")
|
| 269 |
+
# Fallback básico
|
| 270 |
full_prompt = "A photograph"
|
| 271 |
+
caption_fast = "image"
|
| 272 |
+
caption_detailed = "detailed image"
|
| 273 |
|
| 274 |
+
logger.info(f"Florence-2 caption: {full_prompt[:100]}...")
|
| 275 |
|
| 276 |
+
# Ejecutar análisis ultra supremo con múltiples modelos
|
| 277 |
logger.info("Running multi-model ultra supreme analysis...")
|
| 278 |
ultra_analysis = self.analyzer.ultra_supreme_analysis(
|
| 279 |
+
image, caption_fast, caption_detailed, full_prompt
|
| 280 |
)
|
| 281 |
|
| 282 |
# Construir prompt mejorado basado en análisis completo
|
| 283 |
enhanced_prompt_parts = []
|
| 284 |
|
| 285 |
+
# Base prompt de Florence
|
| 286 |
enhanced_prompt_parts.append(full_prompt)
|
| 287 |
|
| 288 |
# Agregar información demográfica si está disponible
|
|
|
|
| 323 |
|
| 324 |
# Generate enhanced analysis report con datos de múltiples modelos
|
| 325 |
analysis_info = self._generate_ultra_analysis_report(
|
| 326 |
+
ultra_analysis, score, breakdown, duration, "Florence-2"
|
| 327 |
)
|
| 328 |
|
| 329 |
return optimized_prompt, analysis_info, score, breakdown
|
|
|
|
| 332 |
logger.error(f"Ultra supreme generation error: {e}", exc_info=True)
|
| 333 |
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
| 334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
def _generate_ultra_analysis_report(self, analysis: Dict[str, Any],
|
| 336 |
score: int, breakdown: Dict[str, int],
|
| 337 |
+
duration: float, caption_model: str = "Florence-2") -> str:
|
| 338 |
"""Generate ultra detailed analysis report with multi-model results"""
|
| 339 |
|
| 340 |
device_used = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 392 |
# Intelligence metrics
|
| 393 |
metrics = analysis["intelligence_metrics"]
|
| 394 |
|
| 395 |
+
# Caption info
|
| 396 |
+
caption_info = analysis.get("clip_best", "")[:150] + "..." if len(analysis.get("clip_best", "")) > 150 else analysis.get("clip_best", "")
|
| 397 |
+
|
| 398 |
analysis_info = f"""**🚀 ULTRA SUPREME MULTI-MODEL ANALYSIS COMPLETE**
|
| 399 |
+
**Processing:** {gpu_status} • {duration:.1f}s • {caption_model} + Multi-Model Pipeline
|
| 400 |
+
**Ultra Score:** {score}/100 • Models: {caption_model} + DeepFace + MediaPipe + Transformers
|
| 401 |
|
| 402 |
**📊 BREAKDOWN:**
|
| 403 |
• Prompt Quality: {breakdown.get('prompt_quality', 0)}/25
|
|
|
|
| 405 |
• Model Confidence: {breakdown.get('model_confidence', 0)}/25
|
| 406 |
• Feature Richness: {breakdown.get('feature_richness', 0)}/25
|
| 407 |
|
| 408 |
+
**📝 VISION-LANGUAGE ANALYSIS:**
|
| 409 |
+
**{caption_model} Caption:** {caption_info}
|
| 410 |
+
|
| 411 |
**🧠 DEEP ANALYSIS RESULTS:**
|
| 412 |
|
| 413 |
**👤 DEMOGRAPHICS & IDENTITY:**
|
|
|
|
| 432 |
• **Technical Optimization:** {metrics['technical_optimization_score']}/100
|
| 433 |
|
| 434 |
**✨ MULTI-MODEL ADVANTAGES:**
|
| 435 |
+
✅ {caption_model}: State-of-the-art vision-language understanding
|
| 436 |
✅ DeepFace: Accurate age, gender, emotion detection
|
| 437 |
✅ MediaPipe: Body pose and gesture analysis
|
|
|
|
| 438 |
✅ Transformers: Advanced emotion classification
|
| 439 |
✅ OpenCV: Robust face detection
|
| 440 |
|