Malaji71's picture
Update app.py
98932bb verified
"""
Frame 0 Laboratory for MIA - Main Gradio Interface
FLUX Prompt Optimizer with clean, professional interface
"""
import gradio as gr
import logging
import warnings
import os
from typing import Tuple
from config import APP_CONFIG, ENVIRONMENT
from processor import process_image_simple, flux_optimizer
from utils import setup_logging, clean_memory
# Configure environment
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Setup logging
setup_logging(ENVIRONMENT["log_level"])
logger = logging.getLogger(__name__)
def process_image_interface(image) -> Tuple[str, str, str]:
"""
Main interface function for image processing
Args:
image: Input image from Gradio interface
Returns:
Tuple of (prompt, analysis_report, score_html)
"""
try:
if image is None:
return (
"Please upload an image to analyze",
"No image provided for analysis.",
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
)
logger.info("Processing image through interface")
prompt, report, score_html = process_image_simple(image)
return prompt, report, score_html
except Exception as e:
logger.error(f"Interface processing error: {e}", exc_info=True)
error_msg = f"Processing failed: {str(e)}"
return (
"❌ Processing failed",
f"**Error:** {error_msg}\n\nPlease try again with a different image.",
'<div style="text-align: center; padding: 1rem; color: red;"><div style="font-size: 2rem;">0</div><div style="font-size: 0.875rem;">Error</div></div>'
)
def clear_interface() -> Tuple[str, str, str]:
"""Clear all interface outputs and free memory"""
clean_memory()
logger.info("Interface cleared")
return (
"",
"",
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
)
def get_stats_info() -> str:
"""Get current processing statistics"""
try:
stats = flux_optimizer.get_stats()
stats_text = f"""**Processing Statistics:**
• **Total Images:** {stats['total_processed']}
• **Successful:** {stats['successful_analyses']}
• **Failed:** {stats['failed_analyses']}
• **Success Rate:** {stats['success_rate']:.1%}
• **Average Time:** {stats['average_processing_time']:.1f}s
• **Device:** {stats['device_info']['device'].upper()}
"""
return stats_text
except Exception as e:
logger.error(f"Stats retrieval error: {e}")
return "Statistics unavailable"
def create_interface():
"""Create the main Gradio interface"""
# Simplified CSS based on original
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
.gradio-container {
max-width: 1600px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
/* Text visibility fixes */
.markdown-text, .markdown-text *,
.prose, .prose *,
.gr-markdown, .gr-markdown *,
div[class*="markdown"], div[class*="markdown"] * {
color: #1f2937 !important;
}
.markdown-text h1, .markdown-text h2, .markdown-text h3,
.prose h1, .prose h2, .prose h3,
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
color: #111827 !important;
font-weight: 700 !important;
}
.markdown-text p, .markdown-text li, .markdown-text ul, .markdown-text ol,
.prose p, .prose li, .prose ul, .prose ol,
.gr-markdown p, .gr-markdown li, .gr-markdown ul, .gr-markdown ol {
color: #374151 !important;
}
.markdown-text strong, .prose strong, .gr-markdown strong {
color: #111827 !important;
font-weight: 700 !important;
}
/* Header styling */
.main-header {
text-align: center;
padding: 3rem 0 4rem 0;
background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
color: white;
margin: -2rem -2rem 3rem -2rem;
border-radius: 0 0 32px 32px;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
position: relative;
overflow: hidden;
}
.main-header::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
z-index: 1;
}
.main-title {
font-size: 4rem !important;
font-weight: 900 !important;
margin: 0 0 1rem 0 !important;
letter-spacing: -0.05em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
position: relative;
z-index: 2;
}
.subtitle {
font-size: 1.5rem !important;
font-weight: 500 !important;
opacity: 0.95 !important;
margin: 0 !important;
position: relative;
z-index: 2;
color: #ffffff !important;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 15px !important;
line-height: 1.8 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 2px solid #e2e8f0 !important;
border-radius: 20px !important;
padding: 2.5rem !important;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
transition: all 0.3s ease !important;
color: #1f2937 !important;
}
.prompt-output:hover {
box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
transform: translateY(-2px) !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Frame 0 Laboratory for MIA",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">Frame 0 Laboratory for MIA</div>
<div class="subtitle">Advanced Image Analysis & FLUX Prompt Optimization</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Image Analysis")
image_input = gr.Image(
label="Upload image for analysis",
type="pil",
height=500
)
analyze_btn = gr.Button(
"🔍 Analyze Image",
variant="primary",
size="lg"
)
gr.Markdown("""
### How it works:
**1. Image Analysis:** Advanced AI models analyze your image to understand content, composition, and style.
**2. FLUX Optimization:** Applies proven rules for FLUX image generation including camera settings, lighting, and technical parameters.
**3. Quality Scoring:** Evaluates the optimized prompt across multiple dimensions for best results.
**Supported formats:** JPG, PNG, WebP up to 1024px
""")
# Statistics
with gr.Accordion("📊 Processing Stats", open=False):
stats_output = gr.Markdown(value="No processing completed yet.")
refresh_stats_btn = gr.Button("Refresh Stats", size="sm")
with gr.Column(scale=1):
gr.Markdown("## Results")
score_output = gr.HTML(
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
)
prompt_output = gr.Textbox(
label="🎯 Optimized FLUX Prompt",
placeholder="Upload an image to generate an optimized prompt...",
lines=12,
max_lines=20,
show_copy_button=True
)
info_output = gr.Markdown(value="")
clear_btn = gr.Button("🗑️ Clear Analysis", size="sm")
# Event handlers
analyze_btn.click(
fn=process_image_interface,
inputs=[image_input],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_interface,
outputs=[prompt_output, info_output, score_output]
)
refresh_stats_btn.click(
fn=get_stats_info,
outputs=stats_output
)
gr.Markdown("""
---
### Frame 0 Laboratory for MIA
This system uses state-of-the-art vision-language models to analyze images and generate optimized
prompts for FLUX image generation. The system applies proven optimization rules including camera
configurations, lighting setups, and technical parameters for best results.
**Frame 0 Laboratory for MIA** • Advanced AI Research & Development
""")
return interface
def main():
"""Main application entry point"""
logger.info("Starting Frame 0 Laboratory for MIA")
# Create and launch interface
demo = create_interface()
# Launch with proper configuration
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
if __name__ == "__main__":
main()