Flux_Prompt_Optimizer / optimizer.py
Malaji71's picture
Update optimizer.py
2cddaad verified
raw
history blame
14.9 kB
"""
Ultra Supreme Optimizer - Main optimization engine for image analysis
VERSIÓN MEJORADA - Usa el prompt completo de CLIP Interrogator
"""
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
import spaces
import gc
import logging
import re
from datetime import datetime
from typing import Tuple, Dict, Any, Optional
import torch
import numpy as np
from PIL import Image
from clip_interrogator import Config, Interrogator
from analyzer import UltraSupremeAnalyzer
logger = logging.getLogger(__name__)
class UltraSupremeOptimizer:
"""Main optimizer class for ultra supreme image analysis"""
def __init__(self):
self.interrogator: Optional[Interrogator] = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = self._get_device()
self.is_initialized = False
# Forzar float32 en todo PyTorch
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
# Inicializar modelo inmediatamente en CPU con float32
self.initialize_model()
@staticmethod
def _get_device() -> str:
"""Determine the best available device for computation"""
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def initialize_model(self) -> bool:
"""Initialize the CLIP interrogator model - FLOAT32 FORZADO"""
if self.is_initialized:
return True
try:
# FORZAR FLOAT32 EN TODO - Configuración máxima precisión
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device="cpu" # Inicializar en CPU para controlar precisión
)
self.interrogator = Interrogator(config)
# FORZAR FLOAT32 EN TODOS LOS COMPONENTES DEL MODELO
if hasattr(self.interrogator, 'clip_model') and self.interrogator.clip_model is not None:
self.interrogator.clip_model = self.interrogator.clip_model.float()
logger.info("CLIP model forced to float32")
if hasattr(self.interrogator, 'blip_model') and self.interrogator.blip_model is not None:
self.interrogator.blip_model = self.interrogator.blip_model.float()
logger.info("BLIP model forced to float32")
self.is_initialized = True
# Clean up memory after initialization
gc.collect()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image: Any) -> Optional[Image.Image]:
"""Optimize image for processing"""
if image is None:
return None
try:
# Convert to PIL Image if necessary
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large - usar tamaño generoso para máxima calidad
max_size = 1024 if self.device != "cpu" else 768
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Image optimization error: {e}")
return None
def apply_flux_rules(self, base_prompt: str) -> str:
"""Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
# Limpiar el prompt de elementos no deseados
cleanup_patterns = [
r',\s*trending on artstation',
r',\s*trending on [^,]+',
r',\s*\d+k\s*',
r',\s*\d+k resolution',
r',\s*artstation',
r',\s*concept art',
r',\s*digital art',
r',\s*by greg rutkowski', # Remover artistas genéricos overused
]
cleaned_prompt = base_prompt
for pattern in cleanup_patterns:
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
# Detectar el tipo de imagen para añadir configuración de cámara apropiada
camera_config = ""
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
else:
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
# Añadir mejoras de iluminación si no están presentes
if 'lighting' not in cleaned_prompt.lower():
if 'dramatic' in cleaned_prompt.lower():
cleaned_prompt += ", dramatic cinematic lighting"
elif 'portrait' in cleaned_prompt.lower():
cleaned_prompt += ", professional studio lighting with subtle rim light"
else:
cleaned_prompt += ", masterful natural lighting"
# Construir el prompt final
final_prompt = cleaned_prompt + camera_config
# Asegurar que empiece con mayúscula
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
# Limpiar espacios y comas duplicadas
final_prompt = re.sub(r'\s+', ' ', final_prompt)
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
return final_prompt
@spaces.GPU
def run_clip_inference(self, image: Image.Image) -> Tuple[str, str, str]:
"""Solo la inferencia CLIP usa GPU - FLOAT32 FORZADO"""
try:
# Mover modelo a GPU MANTENIENDO FLOAT32
if hasattr(self.interrogator, 'clip_model') and self.device == "cuda":
self.interrogator.clip_model = self.interrogator.clip_model.to("cuda").float()
logger.info("CLIP model moved to GPU with float32 precision")
if hasattr(self.interrogator, 'blip_model') and self.device == "cuda":
self.interrogator.blip_model = self.interrogator.blip_model.to("cuda").float()
logger.info("BLIP model moved to GPU with float32 precision")
# FORZAR que las inferencias usen float32
with torch.cuda.amp.autocast(enabled=False): # Deshabilitar autocast para forzar float32
# Ejecutar inferencias CLIP en máxima precisión
full_prompt = self.interrogator.interrogate(image)
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
return full_prompt, clip_fast, clip_classic
except Exception as e:
logger.error(f"CLIP inference error: {e}")
raise e
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
"""
Generate ultra supreme prompt from image usando el pipeline completo
MÁXIMA PRECISIÓN FLOAT32 EN TODO
Returns:
Tuple of (prompt, analysis_info, score, breakdown)
"""
try:
# Verificar que el modelo esté inicializado
if not self.is_initialized:
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
# Validate input
if image is None:
return "❌ Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
# Optimize image
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
# PIPELINE CON MÁXIMA PRECISIÓN FLOAT32
logger.info("ULTRA SUPREME ANALYSIS - Float32 máxima precisión")
# Ejecutar inferencia CLIP en GPU con float32 forzado
full_prompt, clip_fast, clip_classic = self.run_clip_inference(image)
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
logger.info(f"Análisis Fast: {clip_fast}")
logger.info(f"Análisis Classic: {clip_classic}")
# 3. Aplicar reglas de Flux al prompt completo
optimized_prompt = self.apply_flux_rules(full_prompt)
# 4. Crear análisis para el reporte (simplificado)
analysis_summary = {
"base_prompt": full_prompt,
"clip_fast": clip_fast,
"clip_classic": clip_classic,
"optimized": optimized_prompt,
"detected_style": self._detect_style(full_prompt),
"detected_subject": self._detect_subject(full_prompt)
}
# 5. Calcular score basado en la riqueza del prompt
score = self._calculate_score(optimized_prompt, full_prompt)
breakdown = {
"base_quality": min(len(full_prompt) // 10, 25),
"technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
"lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
"composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
}
score = sum(breakdown.values())
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Generate analysis report
analysis_info = self._generate_analysis_report(
analysis_summary, score, breakdown, duration
)
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}")
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
def _detect_style(self, prompt: str) -> str:
"""Detecta el estilo principal del prompt"""
styles = {
"portrait": ["portrait", "person", "face", "headshot"],
"landscape": ["landscape", "mountain", "nature", "scenery"],
"street": ["street", "urban", "city"],
"artistic": ["artistic", "abstract", "conceptual"],
"dramatic": ["dramatic", "cinematic", "moody"]
}
for style_name, keywords in styles.items():
if any(keyword in prompt.lower() for keyword in keywords):
return style_name
return "general"
def _detect_subject(self, prompt: str) -> str:
"""Detecta el sujeto principal del prompt"""
# Tomar las primeras palabras significativas
words = prompt.split(',')[0].split()
if len(words) > 3:
return ' '.join(words[:4])
return prompt.split(',')[0]
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
"""Calcula el score basado en la calidad del prompt"""
score = 0
# Base score por longitud y riqueza
score += min(len(base_prompt) // 10, 25)
# Technical enhancement
if "Shot on" in optimized_prompt:
score += 25
# Lighting quality
if "lighting" in optimized_prompt.lower():
score += 25
# Professional quality
if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
score += 25
return min(score, 100)
def _generate_analysis_report(self, analysis: Dict[str, Any],
score: int, breakdown: Dict[str, int],
duration: float) -> str:
"""Generate detailed analysis report"""
gpu_status = "⚡ ZeroGPU (Float32)" if torch.cuda.is_available() else "💻 CPU (Float32)"
# Extraer información clave
detected_style = analysis.get("detected_style", "general").title()
detected_subject = analysis.get("detected_subject", "Unknown")
base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status}{duration:.1f}s • Maximum Precision Pipeline
**Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})
**Generation:** #{self.usage_count}
**🧠 INTELLIGENT DETECTION:**
- **Detected Style:** {detected_style}
- **Main Subject:** {detected_subject}
- **Precision:** Float32 máxima precisión en CPU+GPU
- **Quality:** Maximum resolution processing (1024px)
**📊 CLIP INTERROGATOR ANALYSIS:**
- **Base Prompt:** {base_prompt_preview}
- **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
**⚡ OPTIMIZATION APPLIED:**
- ✅ Float32 forzado en todos los modelos
- ✅ GPU inference con máxima precisión
- ✅ TensorFloat-32 deshabilitado
- ✅ Mixed precision deshabilitado
- ✅ Added professional camera specifications
- ✅ Enhanced lighting descriptions
- ✅ Applied Flux-specific optimizations
- ✅ Removed redundant/generic elements
**🔬 Powered by Pariente AI Research + CLIP Interrogator (Float32 Max)**"""
return analysis_info