Makhinur commited on
Commit
7109a9e
·
verified ·
1 Parent(s): 74ad3a8

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +102 -0
main.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import onnxruntime as rt
3
+ from fastapi import FastAPI, File, UploadFile, HTTPException
4
+ from fastapi.middleware.cors import CORSMiddleware
5
+ from fastapi.responses import StreamingResponse
6
+ from PIL import Image, ImageOps
7
+ import numpy as np
8
+ import io
9
+ import face_detection # Ensure this is the adjusted face_detection.py
10
+
11
+ # Initialize FastAPI app
12
+ app = FastAPI()
13
+
14
+ # Allow CORS for your frontend application
15
+ app.add_middleware(
16
+ CORSMiddleware,
17
+ allow_origins=["*"], # Change this to your frontend's URL in production
18
+ allow_credentials=True,
19
+ allow_methods=["*"],
20
+ allow_headers=["*"],
21
+ )
22
+
23
+ # Load the ONNX model
24
+ MODEL_FILE = "ffhqu2vintage512_pix2pixHD_v1E11-inp2inst-simp.onnx"
25
+ so = rt.SessionOptions()
26
+ so.inter_op_num_threads = 4
27
+ so.intra_op_num_threads = 4
28
+ session = rt.InferenceSession(MODEL_FILE, sess_options=so)
29
+ input_name = session.get_inputs()[0].name
30
+ output_name = session.get_outputs()[0].name
31
+
32
+ def array_to_image(array_in):
33
+ array_in = np.squeeze(255 * (array_in + 1) / 2)
34
+ array_in = np.transpose(array_in, (1, 2, 0))
35
+ im = Image.fromarray(array_in.astype(np.uint8))
36
+ return im
37
+
38
+ def image_as_array(image_in):
39
+ im_array = np.array(image_in, np.float32)
40
+ im_array = (im_array / 255) * 2 - 1
41
+ im_array = np.transpose(im_array, (2, 0, 1))
42
+ im_array = np.expand_dims(im_array, 0)
43
+ return im_array
44
+
45
+ def find_aligned_face(image_in, size=512):
46
+ aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size)
47
+ return aligned_image, n_faces, quad
48
+
49
+ def align_first_face(image_in, size=512):
50
+ aligned_image, n_faces, quad = find_aligned_face(image_in, size=size)
51
+ if n_faces == 0:
52
+ try:
53
+ image_in = ImageOps.exif_transpose(image_in)
54
+ except:
55
+ print("exif problem, not rotating")
56
+ image_in = image_in.resize((size, size))
57
+ im_array = image_as_array(image_in)
58
+ else:
59
+ im_array = image_as_array(aligned_image)
60
+
61
+ return im_array
62
+
63
+ def img_concat_h(im1, im2):
64
+ dst = Image.new('RGB', (im1.width + im2.width, im1.height))
65
+ dst.paste(im1, (0, 0))
66
+ dst.paste(im2, (im1.width, 0))
67
+ return dst
68
+
69
+ def face2vintage(img: Image.Image, size: int) -> Image.Image:
70
+ aligned_img = align_first_face(img)
71
+ if aligned_img is None:
72
+ return None
73
+
74
+ output = session.run([output_name], {input_name: aligned_img})[0]
75
+ output = array_to_image(output)
76
+ aligned_img = array_to_image(aligned_img).resize((output.width, output.height))
77
+ output = img_concat_h(aligned_img, output)
78
+
79
+ return output
80
+
81
+ @app.post("/process_image/")
82
+ async def process_image(file: UploadFile = File(...)):
83
+ try:
84
+ # Read the image file
85
+ image_bytes = await file.read()
86
+ image = Image.open(io.BytesIO(image_bytes))
87
+
88
+ # Process the image
89
+ processed_image = face2vintage(image, 512)
90
+
91
+ # Convert the processed image to bytes
92
+ if processed_image is None:
93
+ raise HTTPException(status_code=400, detail="Could not process image.")
94
+
95
+ img_byte_arr = io.BytesIO()
96
+ processed_image.save(img_byte_arr, format='PNG')
97
+ img_byte_arr.seek(0)
98
+
99
+ return StreamingResponse(img_byte_arr, media_type="image/png")
100
+
101
+ except Exception as e:
102
+ raise HTTPException(status_code=500, detail=str(e))