Update model.py
Browse files
model.py
CHANGED
|
@@ -1,25 +1,19 @@
|
|
| 1 |
-
|
| 2 |
from typing import Iterator
|
| 3 |
|
| 4 |
-
import
|
| 5 |
-
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
|
| 7 |
-
model_id = 'codellama/CodeLlama-
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
use_safetensors=False,
|
| 19 |
-
)
|
| 20 |
-
else:
|
| 21 |
-
model = None
|
| 22 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 23 |
|
| 24 |
|
| 25 |
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
|
@@ -36,12 +30,6 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
|
| 36 |
return ''.join(texts)
|
| 37 |
|
| 38 |
|
| 39 |
-
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
|
| 40 |
-
prompt = get_prompt(message, chat_history, system_prompt)
|
| 41 |
-
input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids']
|
| 42 |
-
return input_ids.shape[-1]
|
| 43 |
-
|
| 44 |
-
|
| 45 |
def run(message: str,
|
| 46 |
chat_history: list[tuple[str, str]],
|
| 47 |
system_prompt: str,
|
|
@@ -50,26 +38,20 @@ def run(message: str,
|
|
| 50 |
top_p: float = 0.9,
|
| 51 |
top_k: int = 50) -> Iterator[str]:
|
| 52 |
prompt = get_prompt(message, chat_history, system_prompt)
|
| 53 |
-
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
|
| 54 |
|
| 55 |
-
streamer = TextIteratorStreamer(tokenizer,
|
| 56 |
-
timeout=10.,
|
| 57 |
-
skip_prompt=True,
|
| 58 |
-
skip_special_tokens=True)
|
| 59 |
generate_kwargs = dict(
|
| 60 |
-
inputs,
|
| 61 |
-
streamer=streamer,
|
| 62 |
max_new_tokens=max_new_tokens,
|
| 63 |
do_sample=True,
|
| 64 |
top_p=top_p,
|
| 65 |
top_k=top_k,
|
| 66 |
temperature=temperature,
|
| 67 |
-
num_beams=1,
|
| 68 |
)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
from typing import Iterator
|
| 3 |
|
| 4 |
+
from text_generation import Client
|
|
|
|
| 5 |
|
| 6 |
+
model_id = 'codellama/CodeLlama-34b-Instruct-hf'
|
| 7 |
|
| 8 |
+
API_URL = "https://api-inference.huggingface.co/models/" + model_id
|
| 9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 10 |
+
|
| 11 |
+
client = Client(
|
| 12 |
+
API_URL,
|
| 13 |
+
headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
| 14 |
+
)
|
| 15 |
+
EOS_STRING = "</s>"
|
| 16 |
+
EOT_STRING = "<EOT>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
|
|
|
| 30 |
return ''.join(texts)
|
| 31 |
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def run(message: str,
|
| 34 |
chat_history: list[tuple[str, str]],
|
| 35 |
system_prompt: str,
|
|
|
|
| 38 |
top_p: float = 0.9,
|
| 39 |
top_k: int = 50) -> Iterator[str]:
|
| 40 |
prompt = get_prompt(message, chat_history, system_prompt)
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
generate_kwargs = dict(
|
|
|
|
|
|
|
| 43 |
max_new_tokens=max_new_tokens,
|
| 44 |
do_sample=True,
|
| 45 |
top_p=top_p,
|
| 46 |
top_k=top_k,
|
| 47 |
temperature=temperature,
|
|
|
|
| 48 |
)
|
| 49 |
+
stream = client.generate_stream(prompt, **generate_kwargs)
|
| 50 |
+
output = ""
|
| 51 |
+
for response in stream:
|
| 52 |
+
if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]):
|
| 53 |
+
return output
|
| 54 |
+
else:
|
| 55 |
+
output += response.token.text
|
| 56 |
+
yield output
|
| 57 |
+
return output
|