Update main.py
Browse filesfrom fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from gradio_client import Client, handle_file
import shutil
import base64
import os
app = FastAPI()
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize the Gradio client with the token
client = Client("Makhinur/Image_Face_Upscale_Restoration-GFPGAN", hf_token=HF_TOKEN)
# Version mapping from HTML to Gradio API
version_map = {
"M1": "v1.2",
"M2": "v1.3",
"M3": "v1.4"
}
@app
.post("/upload/")
async def enhance_image(
file: UploadFile = File(...),
version: str = Form(...),
scale: int = Form(...)
):
# Map version from HTML to Gradio expected value
gradio_version = version_map.get(version, "v1.4")
# Save the uploaded image to a temporary file
temp_file_path = "temp_image.png"
with open(temp_file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
try:
# Use the Gradio client to process the image
result = client.predict(
img=handle_file(temp_file_path),
version=gradio_version,
scale=scale,
api_name="/predict"
)
# Read the result image and encode it in base64
with open(result[0], "rb") as img_file:
b64_string = base64.b64encode(img_file.read()).decode('utf-8')
# Clean up the temporary file
os.remove(temp_file_path)
return JSONResponse(content={"sketch_image_base64": f"data:image/png;base64,{b64_string}"})
except Exception as e:
# Log the error message for debugging
print(f"Error processing image: {e}")
return JSONResponse(status_code=500, content={"message": "Internal Server Error"})
@@ -1,8 +1,8 @@
|
|
1 |
-
from fastapi import FastAPI,
|
2 |
from fastapi.responses import JSONResponse
|
3 |
from gradio_client import Client, handle_file
|
|
|
4 |
import base64
|
5 |
-
|
6 |
import os
|
7 |
|
8 |
app = FastAPI()
|
@@ -15,23 +15,26 @@ client = Client("Makhinur/Bringingoldphotoliveagain", hf_token=HF_TOKEN)
|
|
15 |
@app.post("/upload/")
|
16 |
async def upload_image(file: UploadFile = File(...)):
|
17 |
try:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
# Use the Gradio client to process the image
|
23 |
-
result =
|
24 |
-
img=handle_file(
|
25 |
api_name="/predict"
|
26 |
)
|
27 |
|
28 |
-
# Read the
|
29 |
-
with open(result[0], "rb") as
|
30 |
-
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
raise HTTPException(status_code=500, detail=str(e))
|
37 |
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
from fastapi.responses import JSONResponse
|
3 |
from gradio_client import Client, handle_file
|
4 |
+
import shutil
|
5 |
import base64
|
|
|
6 |
import os
|
7 |
|
8 |
app = FastAPI()
|
|
|
15 |
@app.post("/upload/")
|
16 |
async def upload_image(file: UploadFile = File(...)):
|
17 |
try:
|
18 |
+
temporary file
|
19 |
+
temp_file_path = "temp_image.png"
|
20 |
+
with open(temp_file_path, "wb") as buffer:
|
21 |
+
shutil.copyfileobj(file.file, buffer)
|
22 |
# Use the Gradio client to process the image
|
23 |
+
result = client.predict(
|
24 |
+
img=handle_file(temp_file_path),
|
25 |
api_name="/predict"
|
26 |
)
|
27 |
|
28 |
+
# Read the result image and encode it in base64
|
29 |
+
with open(result[0], "rb") as img_file:
|
30 |
+
b64_string = base64.b64encode(img_file.read()).decode('utf-8')
|
31 |
|
32 |
+
# Clean up the temporary file
|
33 |
+
os.remove(temp_file_path)
|
34 |
|
35 |
+
return JSONResponse(content={"sketch_image_base64": f"data:image/png;base64,{b64_string}"})
|
|
|
36 |
|
37 |
+
except Exception as e:
|
38 |
+
# Log the error message for debugging
|
39 |
+
print(f"Error processing image: {e}")
|
40 |
+
return JSONResponse(status_code=500, content={"message": "Internal Server Error"})
|