Spaces:
Running
Running
File size: 25,918 Bytes
9169788 f56cbd1 9169788 f56cbd1 5fa1ed0 f56cbd1 e738dd9 9169788 763ea6e f56cbd1 9169788 f56cbd1 9169788 a04eaaf 9169788 f56cbd1 9169788 a04eaaf f56cbd1 9169788 e738dd9 9169788 e738dd9 9e07225 0e385a7 a04eaaf 9e07225 f56cbd1 e738dd9 9169788 e738dd9 9169788 826b5e0 cb9e52f 94b8e27 cb9e52f 9169788 f56cbd1 a04eaaf e738dd9 a04eaaf e738dd9 a04eaaf e738dd9 e6cd719 9169788 e738dd9 f56cbd1 826b5e0 f56cbd1 e738dd9 f56cbd1 9169788 f56cbd1 9169788 e738dd9 9169788 e738dd9 9169788 e738dd9 9169788 f56cbd1 9169788 f56cbd1 9169788 e738dd9 9e07225 e738dd9 9169788 e738dd9 a04eaaf e738dd9 9169788 e738dd9 9169788 e738dd9 f56cbd1 9169788 f56cbd1 e738dd9 f56cbd1 9169788 f56cbd1 e738dd9 9169788 763ea6e e738dd9 763ea6e f56cbd1 e738dd9 9e07225 e738dd9 9e07225 e738dd9 763ea6e e738dd9 9e07225 e738dd9 9e07225 e738dd9 9e07225 e738dd9 9e07225 a04eaaf e738dd9 9e07225 e738dd9 763ea6e e738dd9 9e07225 9169788 e738dd9 a04eaaf 9e07225 e738dd9 9e07225 a04eaaf 9e07225 8e264ce 9e07225 cb3cd10 9e07225 a04eaaf 9e07225 a04eaaf 9e07225 8e264ce 9e07225 9169788 9e07225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
import argparse
import os
from pathlib import Path
import logging
import re_matching
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import shutil
from scipy.io.wavfile import write
import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
import gradio as gr
import utils
from config import config
import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations,extract_and_convert
from text.cleaner import clean_text
import utils
from tools.translate import translate
from models import SynthesizerTrn
from text.symbols import symbols
import sys
import re
import random
import hashlib
from fugashi import Tagger
import jaconv
import unidic
import subprocess
import requests
from ebooklib import epub
import PyPDF2
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import jieba
import romajitable
webBase = {
'pyopenjtalk-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/',
'fugashi-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/',
}
languages = [ "Auto", "ZH", "JP"]
modelPaths = []
modes = ['pyopenjtalk-V2.3']
if torch.cuda.is_available():
modes = ['pyopenjtalk-V2.3','fugashi-V2.3']
sentence_modes = ['sentence','paragraph']
net_g = None
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
#device = "cpu"
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo":["燈","愛音","そよ","立希","楽奈"],
"AveMujica":["祥子","睦","海鈴","にゃむ","初華"],
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}
# 推理工具
def download_unidic():
try:
Tagger()
print("Tagger launch successfully.")
except Exception as e:
print("UNIDIC dictionary not found, downloading...")
subprocess.run([sys.executable, "-m", "unidic", "download"])
print("Download completed.")
def kanji_to_hiragana(text):
global tagger
output = ""
# 更新正则表达式以更准确地区分文本和标点符号
segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE)
for segment in segments:
if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment):
# 如果是单词或汉字,转换为平假名
for word in tagger(segment):
kana = word.feature.kana or word.surface
hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名
output += hiragana
else:
# 如果是标点符号,保持不变
output += segment
return output
def get_net_g(model_path: str, device: str, hps):
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
style_text = None if style_text == "" else style_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(
norm_text, word2ph, language_str, device, style_text, style_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.randn(1024, len(phone))
en_bert = torch.randn(1024, len(phone))
elif language_str == "JP":
bert = torch.randn(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.randn(1024, len(phone))
elif language_str == "EN":
bert = torch.randn(1024, len(phone))
ja_bert = torch.randn(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text=None,
style_weight=0.7,
language = "Auto",
mode = 'pyopenjtalk-V2.3',
skip_start=False,
skip_end=False,
):
if style_text == None:
style_text = ""
style_weight=0,
if mode == 'fugashi-V2.3':
text = kanji_to_hiragana(text) if is_japanese(text) else text
if language == "JP":
text = translate(text,"jp")
if language == "ZH":
text = translate(text,"zh")
if language == "Auto":
language= 'JP' if is_japanese(text) else 'ZH'
#print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{sid}:{language}:{mode}:{skip_start}:{skip_end}')
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
style_text=style_text,
style_weight=style_weight,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
# emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Success.")
return audio
def loadmodel(model):
_ = net_g.eval()
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
return "success"
def generate_audio_and_srt_for_group(
group,
outputPath,
group_index,
sampling_rate,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speakerList,
silenceTime,
language,
mode,
skip_start,
skip_end,
style_text,
style_weight,
):
audio_fin = []
ass_entries = []
start_time = 0
#speaker = random.choice(cara_list)
ass_header = """[Script Info]
; 我没意见
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""
for sentence in group:
try:
if len(sentence) > 1:
FakeSpeaker = sentence.split("|")[0]
print(FakeSpeaker)
SpeakersList = re.split('\n', speakerList)
if FakeSpeaker in list(hps.data.spk2id.keys()):
speaker = FakeSpeaker
for i in SpeakersList:
if FakeSpeaker == i.split("|")[1]:
speaker = i.split("|")[0]
if sentence != '\n':
text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。")
if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3':
#print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{speaker}:{language}:{mode}:{skip_start}:{skip_end}')
audio = infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
style_text,
style_weight,
language,
mode,
skip_start,
skip_end,
)
silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
duration = len(audio) / sampling_rate
print(duration)
end_time = start_time + duration + silenceTime
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
start_time = end_time
except:
pass
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')
write(wav_filename, sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin)))
with open(ass_filename, 'w', encoding='utf-8') as f:
f.write(ass_header + '\n'.join(ass_entries))
return (hps.data.sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin)))
def generate_audio(
inputFile,
groupSize,
filepath,
silenceTime,
speakerList,
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text=None,
style_weight=0.7,
language = "Auto",
mode = 'pyopenjtalk-V2.3',
sentence_mode = 'sentence',
skip_start=False,
skip_end=False,
):
if inputFile:
text = extract_text_from_file(inputFile.name)
sentence_mode = 'paragraph'
if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3':
if sentence_mode == 'sentence':
audio = infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text,
style_weight,
language,
mode,
skip_start,
skip_end,
)
return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))
if sentence_mode == 'paragraph':
GROUP_SIZE = groupSize
directory_path = filepath if torch.cuda.is_available() else "books"
if os.path.exists(directory_path):
shutil.rmtree(directory_path)
os.makedirs(directory_path)
if language == 'Auto':
sentences = extrac(extract_and_convert(text))
else:
sentences = extrac(text)
for i in range(0, len(sentences), GROUP_SIZE):
group = sentences[i:i+GROUP_SIZE]
if speakerList == "":
speakerList = "无"
result = generate_audio_and_srt_for_group(
group,
directory_path,
i//GROUP_SIZE + 1,
44100,
sid,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speakerList,
silenceTime,
language,
mode,
skip_start,
skip_end,
style_text,
style_weight,
)
if not torch.cuda.is_available():
return result
return result
#url = f'{webBase[mode]}?text={text}&speaker={sid}&sdp_ratio={sdp_ratio}&noise_scale={noise_scale}&noise_scale_w={noise_scale_w}&length_scale={length_scale}&language={language}&skip_start={skip_start}&skip_end={skip_end}'
#print(url)
#res = requests.get(url)
#改用post
res = requests.post(webBase[mode], json = {
"groupSize": groupSize,
"filepath": filepath,
"silenceTime": silenceTime,
"speakerList": speakerList,
"text": text,
"speaker": sid,
"sdp_ratio": sdp_ratio,
"noise_scale": noise_scale,
"noise_scale_w": noise_scale_w,
"length_scale": length_scale,
"language": language,
"skip_start": skip_start,
"skip_end": skip_end,
"mode": mode,
"sentence_mode": sentence_mode,
"style_text": style_text,
"style_weight": style_weight
})
audio = res.content
with open('output.wav', 'wb') as code:
code.write(audio)
file_path = "output.wav"
return file_path
if __name__ == "__main__":
if torch.cuda.is_available():
download_unidic()
tagger = Tagger()
for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'):
for filename in filenames:
modelPaths.append(os.path.join(dirpath, filename))
hps = utils.get_hparams_from_file('Data/BangDream/config.json')
net_g = get_net_g(
model_path=modelPaths[-1], device=device, hps=hps
)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
with gr.Blocks() as app:
gr.Markdown(value="""
[日语特化版(推荐)](https://huggingface.co/spaces/Mahiruoshi/BangStarlight),国内可用连接: https://mahiruoshi-BangStarlight.hf.space/\n
[假名标注版](https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert),国内可用连接: https://mahiruoshi-MyGO-VIts-bert.hf.space/\n
该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n
([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n
[好玩的](http://love.soyorin.top/)\n
API: https://mahiruoshi-bert-vits2-api.hf.space/ \n
调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n
推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n
二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n
训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n
BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n
!!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""")
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">'
'</div>'
)
with gr.Accordion(label="参数设定", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise:感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.667, step=0.01, label="Noise_W:音素长度"
)
skip_start = gr.Checkbox(label="skip_start")
skip_end = gr.Checkbox(label="skip_end")
speaker = gr.Dropdown(
choices=speakers, value=name, label="说话人"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
)
language = gr.Dropdown(
choices=languages, value="Auto", label="语言选择,若不选自动则会将输入语言翻译为日语或中文"
)
mode = gr.Dropdown(
choices=modes, value="pyopenjtalk-V2.3", label="TTS模式,合成少歌角色需要切换成 pyopenjtalk-V2.3-Katakana "
)
sentence_mode = gr.Dropdown(
choices=sentence_modes, value="paragraph", label="文本合成模式"
)
with gr.Accordion(label="扩展选项", open=False):
inputFile = gr.UploadButton(label="txt文件输入")
speakerList = gr.TextArea(
label="角色对应表,如果你记不住角色名可以这样,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}",
value = "ましろ|天音\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
)
groupSize = gr.Slider(
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大句子数"
)
filepath = gr.TextArea(
label="本地合成时的音频存储文件夹(会清空文件夹,别把C盘删了)",
value = "D:/audiobook/book1",
)
silenceTime = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔"
)
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
btnMod = gr.Button("载入模型")
statusa = gr.TextArea(label = "模型加载状态")
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
with gr.Column():
text = gr.TextArea(
label="文本输入,可用'|'分割说话人和文本,注意换行",
info="输入纯日语或者中文",
value=f"{name}|你是职业歌手吗\n天音|我觉得我是",
placeholder=f"私は{name}です、あの子はだれ? "
)
style_text = gr.Textbox(
label="情感辅助文本",
info="语言保持跟主文本一致,文本可以参考训练集:https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/filelists/Mygo.list)",
placeholder="使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n"
"**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)"
)
style_weight = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Weight",
info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本",
)
btn = gr.Button("点击生成", variant="primary")
audio_output = gr.Audio(label="Output Audio")
btntran = gr.Button("快速中翻日")
translateResult = gr.TextArea(label="使用百度翻译",placeholder="从这里复制翻译后的文本")
btntran.click(translate, inputs=[text], outputs = [translateResult])
btn.click(
generate_audio,
inputs=[
inputFile,
groupSize,
filepath,
silenceTime,
speakerList,
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
style_text,
style_weight,
language,
mode,
sentence_mode,
skip_start,
skip_end
],
outputs=[audio_output],
)
print("推理页面已开启!")
app.launch() |