File size: 36,016 Bytes
9169788
 
 
 
f56cbd1
9169788
 
f56cbd1
 
 
 
 
5fa1ed0
 
 
f56cbd1
 
e738dd9
 
9169788
763ea6e
f56cbd1
9169788
 
 
 
 
 
 
 
 
 
 
f56cbd1
9169788
 
f56cbd1
9169788
f56cbd1
 
9169788
e738dd9
 
 
 
 
 
 
 
 
9169788
e738dd9
 
 
 
 
 
 
 
 
9e07225
 
 
 
 
 
 
0e385a7
9e07225
 
f56cbd1
e738dd9
9169788
 
 
 
 
 
 
 
 
e738dd9
 
9169788
826b5e0
cb9e52f
 
 
 
 
 
94b8e27
cb9e52f
 
 
 
 
9169788
f56cbd1
9e07225
e738dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6cd719
9169788
 
 
 
 
 
 
 
 
 
 
e738dd9
 
f56cbd1
 
826b5e0
f56cbd1
 
 
 
 
 
 
e738dd9
 
 
f56cbd1
9169788
f56cbd1
 
9169788
e738dd9
 
9169788
e738dd9
9169788
e738dd9
 
 
 
 
9169788
 
f56cbd1
 
 
 
 
 
 
 
9169788
f56cbd1
9169788
 
 
 
 
 
 
e738dd9
 
 
9e07225
e738dd9
 
9169788
e738dd9
 
 
 
 
 
 
 
 
 
9169788
e738dd9
 
 
 
 
 
9169788
e738dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
f56cbd1
 
 
 
 
 
9169788
f56cbd1
e738dd9
f56cbd1
 
 
 
 
 
 
 
 
 
 
9169788
f56cbd1
 
 
 
 
 
 
 
 
e738dd9
 
 
 
 
 
 
 
 
 
9169788
763ea6e
e738dd9
 
763ea6e
 
 
 
 
f56cbd1
e738dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e07225
e738dd9
 
 
 
 
 
 
 
 
 
 
9e07225
e738dd9
 
763ea6e
 
 
 
 
 
e738dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e07225
 
e738dd9
 
 
 
 
 
 
 
 
 
9e07225
e738dd9
 
 
 
 
 
 
 
 
 
 
 
9e07225
e738dd9
 
 
 
9e07225
 
 
0e385a7
e738dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e07225
e738dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
763ea6e
e738dd9
 
 
9e07225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9169788
e738dd9
9e07225
 
 
 
e738dd9
 
 
 
 
9e07225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e264ce
9e07225
 
 
 
 
d46f3c3
9e07225
 
 
 
 
8e264ce
9e07225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e264ce
 
9e07225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e264ce
 
 
9e07225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9169788
9e07225
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
import argparse
import os
from pathlib import Path

import logging
import re_matching

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)
import shutil
from scipy.io.wavfile import write
import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm

import gradio as gr

import utils
from config import config

import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import utils

from models import SynthesizerTrn
from text.symbols import symbols
import sys
import re

import random
import hashlib

from fugashi import Tagger
import jaconv
import unidic
import subprocess

import requests

from ebooklib import epub
import PyPDF2
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import jieba 
import romajitable

webBase = {
    'pyopenjtalk-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/',
    'fugashi-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/',
}

languages = [ "Auto", "ZH", "JP"]
modelPaths = []
modes = ['pyopenjtalk-V2.3']
sentence_modes = ['sentence','paragraph']

net_g = None

device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )

#device = "cpu"
BandList = {
        "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
        "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
        "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
        "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
        "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
        "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
        "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
        "MyGo":["燈","愛音","そよ","立希","楽奈"],
        "AveMujica":["祥子","睦","海鈴","にゃむ","初華"],
        "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
        "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
        "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
        "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}

#翻译

def translate(Sentence: str, to_Language: str = "jp", from_Language: str = ""):
    """
    :param Sentence: 待翻译语句
    :param from_Language: 待翻译语句语言
    :param to_Language: 目标语言
    :return: 翻译后语句 出错时返回None
    常见语言代码:中文 zh 英语 en 日语 jp
    """
    appid = "20231117001883321"
    key = "lMQbvZHeJveDceLof2wf"
    if appid == "" or key == "":
        return "请开发者在config.yml中配置app_key与secret_key"
    url = "https://fanyi-api.baidu.com/api/trans/vip/translate"
    texts = Sentence.splitlines()
    outTexts = []
    for t in texts:
        if t != "":
            # 签名计算 参考文档 https://api.fanyi.baidu.com/product/113
            salt = str(random.randint(1, 100000))
            signString = appid + t + salt + key
            hs = hashlib.md5()
            hs.update(signString.encode("utf-8"))
            signString = hs.hexdigest()
            if from_Language == "":
                from_Language = "auto"
            headers = {"Content-Type": "application/x-www-form-urlencoded"}
            payload = {
                "q": t,
                "from": from_Language,
                "to": to_Language,
                "appid": appid,
                "salt": salt,
                "sign": signString,
            }
            # 发送请求
            try:
                response = requests.post(
                    url=url, data=payload, headers=headers, timeout=3
                )
                response = response.json()
                if "trans_result" in response.keys():
                    result = response["trans_result"][0]
                    if "dst" in result.keys():
                        dst = result["dst"]
                        outTexts.append(dst)
            except Exception:
                return Sentence
        else:
            outTexts.append(t)
    return "\n".join(outTexts)

#文本清洗工具
def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def is_chinese(string):
    for ch in string:
        if '\u4e00' <= ch <= '\u9fff':
            return True
    return False

def is_single_language(sentence):
    # 检查句子是否为单一语言
    contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None
    contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None
    contains_english = re.search(r'[a-zA-Z]', sentence) is not None
    language_count = sum([contains_chinese, contains_japanese, contains_english])
    return language_count == 1

def merge_scattered_parts(sentences):
    """合并零散的部分到相邻的句子中,并确保单一语言性"""
    merged_sentences = []
    buffer_sentence = ""

    for sentence in sentences:
        # 检查是否是单一语言或者太短(可能是标点或单个词)
        if is_single_language(sentence) and len(sentence) > 1:
            # 如果缓冲区有内容,先将缓冲区的内容添加到列表
            if buffer_sentence:
                merged_sentences.append(buffer_sentence)
                buffer_sentence = ""
            merged_sentences.append(sentence)
        else:
            # 如果是零散的部分,将其添加到缓冲区
            buffer_sentence += sentence

    # 确保最后的缓冲区内容被添加
    if buffer_sentence:
        merged_sentences.append(buffer_sentence)

    return merged_sentences

def is_only_punctuation(s):
    """检查字符串是否只包含标点符号"""
    # 此处列出中文、日文、英文常见标点符号
    punctuation_pattern = re.compile(r'^[\s。*;,:“”()、!?《》\u3000\.,;:"\'?!()]+$')
    return punctuation_pattern.match(s) is not None

def split_mixed_language(sentence):
    # 分割混合语言句子
    # 逐字符检查,分割不同语言部分
    sub_sentences = []
    current_language = None
    current_part = ""

    for char in sentence:
        if re.match(r'[\u4e00-\u9fff]', char):  # Chinese character
            if current_language != 'chinese':
                if current_part:
                    sub_sentences.append(current_part)
                current_part = char
                current_language = 'chinese'
            else:
                current_part += char
        elif re.match(r'[\u3040-\u30ff\u31f0-\u31ff]', char):  # Japanese character
            if current_language != 'japanese':
                if current_part:
                    sub_sentences.append(current_part)
                current_part = char
                current_language = 'japanese'
            else:
                current_part += char
        elif re.match(r'[a-zA-Z]', char):  # English character
            if current_language != 'english':
                if current_part:
                    sub_sentences.append(current_part)
                current_part = char
                current_language = 'english'
            else:
                current_part += char
        else:
            current_part += char  # For punctuation and other characters
    
    if current_part:
        sub_sentences.append(current_part)

    return sub_sentences

def replace_quotes(text):
    # 替换中文、日文引号为英文引号
    text = re.sub(r'[“”‘’『』「」()()]', '"', text)
    return text

def remove_numeric_annotations(text):
    # 定义用于匹配数字注释的正则表达式
    # 包括 “”、【】和〔〕包裹的数字
    pattern = r'“\d+”|【\d+】|〔\d+〕'
    # 使用正则表达式替换掉这些注释
    cleaned_text = re.sub(pattern, '', text)
    return cleaned_text

def merge_adjacent_japanese(sentences):
    """合并相邻且都只包含日语的句子"""
    merged_sentences = []
    i = 0
    while i < len(sentences):
        current_sentence = sentences[i]
        if i + 1 < len(sentences) and is_japanese(current_sentence) and is_japanese(sentences[i + 1]):
            # 当前句子和下一句都是日语,合并它们
            while i + 1 < len(sentences) and is_japanese(sentences[i + 1]):
                current_sentence += sentences[i + 1]
                i += 1
        merged_sentences.append(current_sentence)
        i += 1
    return merged_sentences

def extrac(text):
    text = replace_quotes(remove_numeric_annotations(text))  # 替换引号
    text = re.sub("<[^>]*>", "", text)  # 移除 HTML 标签
    # 使用换行符和标点符号进行初步分割
    preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text)
    final_sentences = []

    preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text)

    for piece in preliminary_sentences:
        if is_single_language(piece):
            final_sentences.append(piece)
        else:
            sub_sentences = split_mixed_language(piece)
            final_sentences.extend(sub_sentences)
    
    # 处理长句子,使用jieba进行分词
    split_sentences = []
    for sentence in final_sentences:
        split_sentences.extend(split_long_sentences(sentence))

    # 合并相邻的日语句子
    merged_japanese_sentences = merge_adjacent_japanese(split_sentences)

    # 剔除只包含标点符号的元素
    clean_sentences = [s for s in merged_japanese_sentences if not is_only_punctuation(s)]

    # 移除空字符串并去除多余引号
    return [s.replace('"','').strip() for s in clean_sentences if s]



  # 移除空字符串

def is_mixed_language(sentence):
    contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None
    contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None
    contains_english = re.search(r'[a-zA-Z]', sentence) is not None
    languages_count = sum([contains_chinese, contains_japanese, contains_english])
    return languages_count > 1

def split_mixed_language(sentence):
    # 分割混合语言句子
    sub_sentences = re.split(r'(?<=[。!?\.\?!])(?=")|(?<=")(?=[\u4e00-\u9fff\u3040-\u30ff\u31f0-\u31ff]|[a-zA-Z])', sentence)
    return [s.strip() for s in sub_sentences if s.strip()]

def seconds_to_ass_time(seconds):
    """将秒数转换为ASS时间格式"""
    hours = int(seconds / 3600)
    minutes = int((seconds % 3600) / 60)
    seconds = int(seconds) % 60
    milliseconds = int((seconds - int(seconds)) * 1000)
    return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10))

def extract_text_from_epub(file_path):
    book = epub.read_epub(file_path)
    content = []
    for item in book.items:
        if isinstance(item, epub.EpubHtml):
            soup = BeautifulSoup(item.content, 'html.parser')
            content.append(soup.get_text())
    return '\n'.join(content)

def extract_text_from_pdf(file_path):
    with open(file_path, 'rb') as file:
        reader = PdfReader(file)
        content = [page.extract_text() for page in reader.pages]
    return '\n'.join(content)

def remove_annotations(text):
    # 移除方括号、尖括号和中文方括号中的内容
    text = re.sub(r'\[.*?\]', '', text)
    text = re.sub(r'\<.*?\>', '', text)
    text = re.sub(r'&#8203;``【oaicite:1】``&#8203;', '', text)
    return text

def extract_text_from_file(inputFile):
    file_extension = os.path.splitext(inputFile)[1].lower()
    if file_extension == ".epub":
        return extract_text_from_epub(inputFile)
    elif file_extension == ".pdf":
        return extract_text_from_pdf(inputFile)
    elif file_extension == ".txt":
        with open(inputFile, 'r', encoding='utf-8') as f:
            return f.read()
    else:
        raise ValueError(f"Unsupported file format: {file_extension}")

def split_by_punctuation(sentence):
    """按照中文次级标点符号分割句子"""
    # 常见的中文次级分隔符号:逗号、分号等
    parts = re.split(r'([,,;;])', sentence)
    # 将标点符号与前面的词语合并,避免单独标点符号成为一个部分
    merged_parts = []
    for part in parts:
        if part and not part in ',,;;':
            merged_parts.append(part)
        elif merged_parts:
            merged_parts[-1] += part
    return merged_parts

def split_long_sentences(sentence, max_length=30):
    """如果中文句子太长,先按标点分割,必要时使用jieba进行分词并分割"""
    if len(sentence) > max_length and is_chinese(sentence):
        # 首先尝试按照次级标点符号分割
        preliminary_parts = split_by_punctuation(sentence)
        new_sentences = []

        for part in preliminary_parts:
            # 如果部分仍然太长,使用jieba进行分词
            if len(part) > max_length:
                words = jieba.lcut(part)
                current_sentence = ""
                for word in words:
                    if len(current_sentence) + len(word) > max_length:
                        new_sentences.append(current_sentence)
                        current_sentence = word
                    else:
                        current_sentence += word
                if current_sentence:
                    new_sentences.append(current_sentence)
            else:
                new_sentences.append(part)

        return new_sentences
    return [sentence]  # 如果句子不长或不是中文,直接返回

def extract_and_convert(text):

    # 使用正则表达式找出所有英文单词
    english_parts = re.findall(r'\b[A-Za-z]+\b', text)  # \b为单词边界标识
    
    # 对每个英文单词进行片假名转换
    kana_parts = ['\n{}\n'.format(romajitable.to_kana(word).katakana) for word in english_parts]

    # 替换原文本中的英文部分
    for eng, kana in zip(english_parts, kana_parts):
        text = text.replace(eng, kana, 1)  # 限制每次只替换一个实例
    
    return text

def get_net_g(model_path: str,  device: str, hps):
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g

def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
    style_text = None if style_text == "" else style_text
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = get_bert(
        norm_text, word2ph, language_str, device, style_text, style_weight
    )
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert_ori
        ja_bert = torch.randn(1024, len(phone))
        en_bert = torch.randn(1024, len(phone))
    elif language_str == "JP":
        bert = torch.randn(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.randn(1024, len(phone))
    elif language_str == "EN":
        bert = torch.randn(1024, len(phone))
        ja_bert = torch.randn(1024, len(phone))
        en_bert = bert_ori
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language

def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    style_text=None,
    style_weight=0.7,
    language = "Auto",
    mode = 'pyopenjtalk-V2.3',
    skip_start=False,
    skip_end=False,
):
    if style_text == None:
        style_text = ""
        style_weight=0,
    if language == "JP":
        text = translate(text,"jp")
    if language == "ZH":
        text = translate(text,"zh")
    if language == "Auto":
        language= 'JP' if is_japanese(text) else 'ZH'
    #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{sid}:{language}:{mode}:{skip_start}:{skip_end}')            
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        style_text=style_text,
        style_weight=style_weight,
    )
    if skip_start:
        phones = phones[3:]
        tones = tones[3:]
        lang_ids = lang_ids[3:]
        bert = bert[:, 3:]
        ja_bert = ja_bert[:, 3:]
        en_bert = en_bert[:, 3:]
    if skip_end:
        phones = phones[:-2]
        tones = tones[:-2]
        lang_ids = lang_ids[:-2]
        bert = bert[:, :-2]
        ja_bert = ja_bert[:, :-2]
        en_bert = en_bert[:, :-2]
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        # emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            speakers,
            ja_bert,
            en_bert,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    print("Success.")
    return audio

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"

def generate_audio_and_srt_for_group(
    group,
    outputPath,
    group_index,
    sampling_rate,
    speaker,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    speakerList,
    silenceTime,
    language,
    mode,
    skip_start,
    skip_end,
    style_text,
    style_weight,
    ):
    audio_fin = []
    ass_entries = []
    start_time = 0
    #speaker = random.choice(cara_list)
    ass_header = """[Script Info]
        ; 我没意见
        Title: Audiobook
        ScriptType: v4.00+
        WrapStyle: 0
        PlayResX: 640
        PlayResY: 360
        ScaledBorderAndShadow: yes
        [V4+ Styles]
        Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
        Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
        [Events]
        Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
        """

    for sentence in group:
        try:
            if len(sentence) > 1:
                FakeSpeaker = sentence.split("|")[0]
                print(FakeSpeaker)
                SpeakersList = re.split('\n', speakerList)
                if FakeSpeaker in list(hps.data.spk2id.keys()):
                    speaker = FakeSpeaker
                for i in SpeakersList:
                    if FakeSpeaker == i.split("|")[1]:
                        speaker = i.split("|")[0]
                if sentence != '\n':
                    text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。")
                    if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3':
                        #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{speaker}:{language}:{mode}:{skip_start}:{skip_end}')
                        audio = infer(
                            text,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            speaker,
                            style_text,
                            style_weight,
                            language,
                            mode,
                            skip_start,
                            skip_end,
                        )
                    silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010)
                    silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
                    audio_fin.append(audio)
                    audio_fin.append(silence_data)
                    duration = len(audio) / sampling_rate
                    print(duration)
                    end_time = start_time + duration + silenceTime
                    ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
                    start_time = end_time
        except:
            pass
    wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
    ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')
    write(wav_filename, sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin)))

    with open(ass_filename, 'w', encoding='utf-8') as f:
        f.write(ass_header + '\n'.join(ass_entries))
    return (hps.data.sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin)))

def generate_audio(
    inputFile,
    groupSize,
    filepath,
    silenceTime,
    speakerList,
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    style_text=None,
    style_weight=0.7,
    language = "Auto",
    mode = 'pyopenjtalk-V2.3',
    sentence_mode = 'sentence',
    skip_start=False,
    skip_end=False,
):
    if inputFile:
        text = extract_text_from_file(inputFile.name)
        sentence_mode = 'paragraph'
    if mode == 'pyopenjtalk-V2.3':
        if sentence_mode == 'sentence':
            audio = infer(
                        text,
                        sdp_ratio,
                        noise_scale,
                        noise_scale_w,
                        length_scale,
                        sid,
                        style_text,
                        style_weight,
                        language,
                        mode,
                        skip_start,
                        skip_end,
                    )
            return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))
        if sentence_mode == 'paragraph':
            GROUP_SIZE = groupSize
            directory_path = filepath if torch.cuda.is_available() else "books"
            if os.path.exists(directory_path):
                shutil.rmtree(directory_path)
            os.makedirs(directory_path)
            if language == 'Auto':
                sentences = extrac(extract_and_convert(text))
            else:
                sentences = extrac(text)
            for i in range(0, len(sentences), GROUP_SIZE):
                group = sentences[i:i+GROUP_SIZE]
                if speakerList == "":
                    speakerList = "无"
                result = generate_audio_and_srt_for_group(
                    group,
                    directory_path,
                    i//GROUP_SIZE + 1,
                    44100,
                    sid,
                    sdp_ratio,
                    noise_scale,
                    noise_scale_w,
                    length_scale,
                    speakerList,
                    silenceTime,
                    language,
                    mode,
                    skip_start,
                    skip_end,
                    style_text,
                    style_weight,       
                    )
                if not torch.cuda.is_available():
                    return result
            return result
    #url = f'{webBase[mode]}?text={text}&speaker={sid}&sdp_ratio={sdp_ratio}&noise_scale={noise_scale}&noise_scale_w={noise_scale_w}&length_scale={length_scale}&language={language}&skip_start={skip_start}&skip_end={skip_end}'
    #print(url)
    #res = requests.get(url)
    #改用post
    res = requests.post(webBase[mode], json = {
        "groupSize": groupSize,
        "filepath": filepath,
        "silenceTime": silenceTime,
        "speakerList": speakerList,
        "text": text,
        "speaker": sid,
        "sdp_ratio": sdp_ratio,
        "noise_scale": noise_scale,
        "noise_scale_w": noise_scale_w,
        "length_scale": length_scale,
        "language": language,
        "skip_start": skip_start,
        "skip_end": skip_end,
        "mode": mode,
        "sentence_mode": sentence_mode,
        "style_text": style_text,
        "style_weight": style_weight
    })
    audio = res.content
    with open('output.wav', 'wb') as code:
        code.write(audio)
    file_path = "output.wav"
    return file_path

if __name__ == "__main__":
    for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    hps = utils.get_hparams_from_file('Data/BangDream/config.json')
    net_g = get_net_g(
        model_path=modelPaths[-1], device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    with gr.Blocks() as app:
        gr.Markdown(value="""
            ([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n
            [好玩的](http://love.soyorin.top/)\n
            该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n
            API: https://mahiruoshi-bert-vits2-api.hf.space/ \n
            调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n
            推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n
            二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n
            训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n
            BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n
            !!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""")
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' 
                                        '</div>'
                                    )
                                with gr.Accordion(label="参数设定", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise:感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.667, step=0.01, label="Noise_W:音素长度"
                                    )
                                    skip_start = gr.Checkbox(label="skip_start")
                                    skip_end = gr.Checkbox(label="skip_end")
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                language = gr.Dropdown(
                                        choices=languages, value="Auto", label="语言选择,若不选自动则会将输入语言翻译为日语或中文"
                                    )
                                mode = gr.Dropdown(
                                        choices=modes, value="pyopenjtalk-V2.3", label="TTS模式,合成少歌角色需要切换成 pyopenjtalk-V2.3-Katakana "
                                    )
                                sentence_mode = gr.Dropdown(
                                        choices=sentence_modes, value="paragraph", label="文本合成模式"
                                    )
                                with gr.Accordion(label="扩展选项", open=False):
                                    inputFile = gr.UploadButton(label="txt文件输入")
                                    speakerList = gr.TextArea(
                                        label="角色对应表,如果你记不住角色名可以这样,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}",
                                        value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
                                    )
                                    groupSize = gr.Slider(
                                        minimum=10, maximum=1000 if  torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大句子数"
                                    )
                                    filepath = gr.TextArea(
                                        label="本地合成时的音频存储文件夹(会清空文件夹,别把C盘删了)",
                                        value = "D:/audiobook/book1",
                                    )
                                    silenceTime = gr.Slider(
                                        minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔"
                                    )
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea(label = "模型加载状态")
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                        label="文本输入,可用'|'分割说话人和文本,注意换行",
                                        info="输入纯日语或者中文",
                                        #placeholder=f"{name}|你觉得你是职业歌手吗\n真白|我觉得我是",
                                        value=f"{name}|你觉得你是职业歌手吗\n真白|我觉得我是" 
                                    )
                                style_text = gr.Textbox(
                                    label="情感辅助文本",
                                    info="语言保持跟主文本一致,文本可以参考训练集:https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/filelists/Mygo.list)",
                                    placeholder="使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n"
                        "**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)"
                                                        )
                                style_weight = gr.Slider(
                                        minimum=0,
                                        maximum=1,
                                        value=0.7,
                                        step=0.1,
                                        label="Weight",
                                        info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本",
                                    )
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                btntran = gr.Button("快速中翻日")
                                translateResult = gr.TextArea(label="使用百度翻译",placeholder="从这里复制翻译后的文本")
                                btntran.click(translate, inputs=[text], outputs = [translateResult])
                    btn.click(
                        generate_audio,
                        inputs=[
                            inputFile,
                            groupSize,
                            filepath,
                            silenceTime,
                            speakerList,
                            text,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            speaker,
                            style_text,
                            style_weight,
                            language,
                            mode,
                            sentence_mode,
                            skip_start,
                            skip_end
                        ],
                        outputs=[audio_output],
                    )
    print("推理页面已开启!")
    app.launch()