File size: 10,945 Bytes
9169788
 
 
 
f56cbd1
9169788
 
f56cbd1
 
 
 
 
5fa1ed0
 
 
f56cbd1
 
9169788
 
763ea6e
f56cbd1
9169788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56cbd1
9169788
 
 
f56cbd1
9169788
f56cbd1
 
9169788
 
f56cbd1
 
9169788
 
 
 
 
 
 
 
 
763ea6e
9169788
94b8e27
9169788
 
f56cbd1
9169788
 
 
 
 
 
 
 
 
 
 
 
 
f56cbd1
 
9169788
f56cbd1
 
 
 
 
 
 
9169788
f56cbd1
9169788
f56cbd1
 
9169788
 
 
 
f56cbd1
9169788
 
 
f56cbd1
9169788
 
 
 
f56cbd1
 
 
 
 
 
 
 
9169788
f56cbd1
9169788
 
 
 
 
 
 
 
 
 
 
 
17bde20
9169788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fa1ed0
9169788
 
 
 
 
f56cbd1
 
 
 
 
 
9169788
f56cbd1
9169788
48ca759
f56cbd1
 
 
 
 
 
 
 
 
 
 
9169788
 
f56cbd1
 
 
 
 
 
 
 
 
9169788
 
763ea6e
14f1e54
763ea6e
9169788
 
 
 
 
763ea6e
 
 
 
 
f56cbd1
 
9169788
 
 
 
 
 
66c448d
5fa1ed0
f56cbd1
 
9169788
763ea6e
9169788
763ea6e
 
f56cbd1
763ea6e
 
 
 
66c448d
 
 
 
763ea6e
 
 
 
 
48ca759
763ea6e
 
 
 
 
9169788
48ca759
9169788
 
763ea6e
 
 
 
 
 
 
 
 
 
 
9169788
 
 
 
 
 
 
 
 
 
 
 
66c448d
9169788
 
 
 
 
 
 
763ea6e
9169788
763ea6e
 
 
 
 
 
 
9169788
 
763ea6e
9169788
763ea6e
9169788
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import os
from pathlib import Path

import logging
import re_matching

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
    Wav2Vec2Model,
    Wav2Vec2PreTrainedModel,
)

import gradio as gr

import utils
from config import config

import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from emo_gen import process_func, EmotionModel, Wav2Vec2Processor, Wav2Vec2Model, Wav2Vec2PreTrainedModel, RegressionHead
from text.cleaner import clean_text
import utils

from models import SynthesizerTrn
from text.symbols import symbols
import sys

net_g = None

device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )

BandList = {
        "MyGo":["燈","愛音","そよ","立希","楽奈"],
        "AveMujica":["祥子","睦","海鈴","にゃむ","初華"]
}

def get_net_g(model_path: str, version: str, device: str, hps):
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g

def get_text(text, language_str, hps, device):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
    print(text)
    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert_ori
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "JP":
        bert = torch.zeros(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "EN":
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = bert_ori
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language

def get_emo_(reference_audio, emotion):
    emo = (
        torch.from_numpy(get_emo(reference_audio))
        if reference_audio
        else torch.Tensor([emotion])
    )
    return emo

def get_emo(path):
    wav, sr = librosa.load(path, 16000)
    device = config.bert_gen_config.device
    return process_func(
        np.expand_dims(wav, 0).astype(np.float64),
        sr,
        emotional_model,
        emotional_processor,
        device,
        embeddings=True,
    ).squeeze(0)

def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    reference_audio=None,
    emotion=None,
):

    language= 'JP' if is_japanese(text) else 'ZH'
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text, language, hps, device
    )
    emo = get_emo_(reference_audio, emotion)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        emo = emo.to(device).unsqueeze(0)
        print(emo)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))

def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"

if __name__ == "__main__":
    emotional_model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim"
    REPO_ID = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
    emotional_processor = Wav2Vec2Processor.from_pretrained(emotional_model_name)
    emotional_model = EmotionModel.from_pretrained(emotional_model_name).to(device)
    hps = utils.get_hparams_from_file('Data/BanGDream/configs/config.json')
    net_g = get_net_g(
        model_path='Data/BanGDream/models/G_132000.pth', version="2.1", device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = [ "Auto", "ZH", "JP"]
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk("Data/BanGDream/models/"):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    with gr.Blocks() as app:
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        classifiedPaths = []
                        for dirpath, dirnames, filenames in os.walk("Data/BanGDream/classifedSample/"+name):
                            for filename in filenames:
                                classifiedPaths.append(os.path.join(dirpath, filename))
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' 
                                        '</div>'
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                emotion = gr.Slider(
                                    minimum=-10, maximum=10, value=0, step=0.1, label="Emotion"
                                )
                                with gr.Accordion(label="参数设定", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                                    )
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    ) 
                                with gr.Accordion(label="切换模型", open=False):
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea()
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                    label="输入纯日语或者中文",
                                    placeholder="输入纯日语或者中文",
                                    value="为什么要演奏春日影!",
                                )
                                reference_audio = gr.Dropdown(label = "情感参考", choices = classifiedPaths, value = classifiedPaths[0], type = "value")
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                '''
                                btntran = gr.Button("快速中翻日")
                                translateResult = gr.TextArea("从这复制翻译后的文本")
                                btntran.click(translate, inputs=[text], outputs = [translateResult])
                                '''
                    btn.click(
                        infer,
                        inputs=[
                            text,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            speaker,
                            reference_audio,
                            emotion,
                        ],
                        outputs=[audio_output],
                    )

    print("推理页面已开启!")
    app.launch()