Spaces:
Running
Running
File size: 37,227 Bytes
9169788 f56cbd1 9169788 f56cbd1 5fa1ed0 f56cbd1 e738dd9 9169788 763ea6e f56cbd1 9169788 f56cbd1 9169788 f56cbd1 9169788 f56cbd1 9169788 e738dd9 9169788 e738dd9 9e07225 f56cbd1 e738dd9 9169788 e738dd9 9169788 826b5e0 cb9e52f 94b8e27 cb9e52f 9169788 f56cbd1 9e07225 e738dd9 e6cd719 9169788 e738dd9 f56cbd1 826b5e0 f56cbd1 e738dd9 f56cbd1 9169788 f56cbd1 9169788 e738dd9 9169788 e738dd9 9169788 e738dd9 9169788 f56cbd1 9169788 f56cbd1 9169788 e738dd9 9e07225 e738dd9 9169788 e738dd9 9e07225 e738dd9 9169788 e738dd9 9169788 e738dd9 f56cbd1 9169788 f56cbd1 e738dd9 f56cbd1 9169788 f56cbd1 e738dd9 9169788 763ea6e e738dd9 763ea6e f56cbd1 e738dd9 9e07225 e738dd9 9e07225 e738dd9 763ea6e e738dd9 9e07225 e738dd9 9e07225 e738dd9 9e07225 e738dd9 9e07225 e738dd9 9e07225 e738dd9 763ea6e e738dd9 9e07225 9169788 e738dd9 9e07225 e738dd9 9e07225 9169788 9e07225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 |
import argparse
import os
from pathlib import Path
import logging
import re_matching
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import shutil
from scipy.io.wavfile import write
import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
import gradio as gr
import utils
from config import config
import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import utils
from models import SynthesizerTrn
from text.symbols import symbols
import sys
import re
import random
import hashlib
from fugashi import Tagger
import jaconv
import unidic
import subprocess
import requests
from ebooklib import epub
import PyPDF2
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
import jieba
import romajitable
webBase = {
'pyopenjtalk-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/',
'fugashi-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/',
}
languages = [ "Auto", "ZH", "JP"]
modelPaths = []
modes = ['pyopenjtalk-V2.3','fugashi-V2.3']
sentence_modes = ['sentence','paragraph']
net_g = None
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
#device = "cpu"
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo":["燈","愛音","そよ","立希","楽奈"],
"AveMujica":["祥子","睦","海鈴","にゃむ","初華"],
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}
#翻译
def translate(Sentence: str, to_Language: str = "jp", from_Language: str = ""):
"""
:param Sentence: 待翻译语句
:param from_Language: 待翻译语句语言
:param to_Language: 目标语言
:return: 翻译后语句 出错时返回None
常见语言代码:中文 zh 英语 en 日语 jp
"""
appid = "20231117001883321"
key = "lMQbvZHeJveDceLof2wf"
if appid == "" or key == "":
return "请开发者在config.yml中配置app_key与secret_key"
url = "https://fanyi-api.baidu.com/api/trans/vip/translate"
texts = Sentence.splitlines()
outTexts = []
for t in texts:
if t != "":
# 签名计算 参考文档 https://api.fanyi.baidu.com/product/113
salt = str(random.randint(1, 100000))
signString = appid + t + salt + key
hs = hashlib.md5()
hs.update(signString.encode("utf-8"))
signString = hs.hexdigest()
if from_Language == "":
from_Language = "auto"
headers = {"Content-Type": "application/x-www-form-urlencoded"}
payload = {
"q": t,
"from": from_Language,
"to": to_Language,
"appid": appid,
"salt": salt,
"sign": signString,
}
# 发送请求
try:
response = requests.post(
url=url, data=payload, headers=headers, timeout=3
)
response = response.json()
if "trans_result" in response.keys():
result = response["trans_result"][0]
if "dst" in result.keys():
dst = result["dst"]
outTexts.append(dst)
except Exception:
return Sentence
else:
outTexts.append(t)
return "\n".join(outTexts)
#文本清洗工具
def is_japanese(string):
for ch in string:
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
return True
return False
def is_chinese(string):
for ch in string:
if '\u4e00' <= ch <= '\u9fff':
return True
return False
def is_single_language(sentence):
# 检查句子是否为单一语言
contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None
contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None
contains_english = re.search(r'[a-zA-Z]', sentence) is not None
language_count = sum([contains_chinese, contains_japanese, contains_english])
return language_count == 1
def merge_scattered_parts(sentences):
"""合并零散的部分到相邻的句子中,并确保单一语言性"""
merged_sentences = []
buffer_sentence = ""
for sentence in sentences:
# 检查是否是单一语言或者太短(可能是标点或单个词)
if is_single_language(sentence) and len(sentence) > 1:
# 如果缓冲区有内容,先将缓冲区的内容添加到列表
if buffer_sentence:
merged_sentences.append(buffer_sentence)
buffer_sentence = ""
merged_sentences.append(sentence)
else:
# 如果是零散的部分,将其添加到缓冲区
buffer_sentence += sentence
# 确保最后的缓冲区内容被添加
if buffer_sentence:
merged_sentences.append(buffer_sentence)
return merged_sentences
def is_only_punctuation(s):
"""检查字符串是否只包含标点符号"""
# 此处列出中文、日文、英文常见标点符号
punctuation_pattern = re.compile(r'^[\s。*;,:“”()、!?《》\u3000\.,;:"\'?!()]+$')
return punctuation_pattern.match(s) is not None
def split_mixed_language(sentence):
# 分割混合语言句子
# 逐字符检查,分割不同语言部分
sub_sentences = []
current_language = None
current_part = ""
for char in sentence:
if re.match(r'[\u4e00-\u9fff]', char): # Chinese character
if current_language != 'chinese':
if current_part:
sub_sentences.append(current_part)
current_part = char
current_language = 'chinese'
else:
current_part += char
elif re.match(r'[\u3040-\u30ff\u31f0-\u31ff]', char): # Japanese character
if current_language != 'japanese':
if current_part:
sub_sentences.append(current_part)
current_part = char
current_language = 'japanese'
else:
current_part += char
elif re.match(r'[a-zA-Z]', char): # English character
if current_language != 'english':
if current_part:
sub_sentences.append(current_part)
current_part = char
current_language = 'english'
else:
current_part += char
else:
current_part += char # For punctuation and other characters
if current_part:
sub_sentences.append(current_part)
return sub_sentences
def replace_quotes(text):
# 替换中文、日文引号为英文引号
text = re.sub(r'[“”‘’『』「」()()]', '"', text)
return text
def remove_numeric_annotations(text):
# 定义用于匹配数字注释的正则表达式
# 包括 “”、【】和〔〕包裹的数字
pattern = r'“\d+”|【\d+】|〔\d+〕'
# 使用正则表达式替换掉这些注释
cleaned_text = re.sub(pattern, '', text)
return cleaned_text
def merge_adjacent_japanese(sentences):
"""合并相邻且都只包含日语的句子"""
merged_sentences = []
i = 0
while i < len(sentences):
current_sentence = sentences[i]
if i + 1 < len(sentences) and is_japanese(current_sentence) and is_japanese(sentences[i + 1]):
# 当前句子和下一句都是日语,合并它们
while i + 1 < len(sentences) and is_japanese(sentences[i + 1]):
current_sentence += sentences[i + 1]
i += 1
merged_sentences.append(current_sentence)
i += 1
return merged_sentences
def extrac(text):
text = replace_quotes(remove_numeric_annotations(text)) # 替换引号
text = re.sub("<[^>]*>", "", text) # 移除 HTML 标签
# 使用换行符和标点符号进行初步分割
preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text)
final_sentences = []
preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text)
for piece in preliminary_sentences:
if is_single_language(piece):
final_sentences.append(piece)
else:
sub_sentences = split_mixed_language(piece)
final_sentences.extend(sub_sentences)
# 处理长句子,使用jieba进行分词
split_sentences = []
for sentence in final_sentences:
split_sentences.extend(split_long_sentences(sentence))
# 合并相邻的日语句子
merged_japanese_sentences = merge_adjacent_japanese(split_sentences)
# 剔除只包含标点符号的元素
clean_sentences = [s for s in merged_japanese_sentences if not is_only_punctuation(s)]
# 移除空字符串并去除多余引号
return [s.replace('"','').strip() for s in clean_sentences if s]
# 移除空字符串
def is_mixed_language(sentence):
contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None
contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None
contains_english = re.search(r'[a-zA-Z]', sentence) is not None
languages_count = sum([contains_chinese, contains_japanese, contains_english])
return languages_count > 1
def split_mixed_language(sentence):
# 分割混合语言句子
sub_sentences = re.split(r'(?<=[。!?\.\?!])(?=")|(?<=")(?=[\u4e00-\u9fff\u3040-\u30ff\u31f0-\u31ff]|[a-zA-Z])', sentence)
return [s.strip() for s in sub_sentences if s.strip()]
def seconds_to_ass_time(seconds):
"""将秒数转换为ASS时间格式"""
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
seconds = int(seconds) % 60
milliseconds = int((seconds - int(seconds)) * 1000)
return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10))
def extract_text_from_epub(file_path):
book = epub.read_epub(file_path)
content = []
for item in book.items:
if isinstance(item, epub.EpubHtml):
soup = BeautifulSoup(item.content, 'html.parser')
content.append(soup.get_text())
return '\n'.join(content)
def extract_text_from_pdf(file_path):
with open(file_path, 'rb') as file:
reader = PdfReader(file)
content = [page.extract_text() for page in reader.pages]
return '\n'.join(content)
def remove_annotations(text):
# 移除方括号、尖括号和中文方括号中的内容
text = re.sub(r'\[.*?\]', '', text)
text = re.sub(r'\<.*?\>', '', text)
text = re.sub(r'​``【oaicite:1】``​', '', text)
return text
def extract_text_from_file(inputFile):
file_extension = os.path.splitext(inputFile)[1].lower()
if file_extension == ".epub":
return extract_text_from_epub(inputFile)
elif file_extension == ".pdf":
return extract_text_from_pdf(inputFile)
elif file_extension == ".txt":
with open(inputFile, 'r', encoding='utf-8') as f:
return f.read()
else:
raise ValueError(f"Unsupported file format: {file_extension}")
def split_by_punctuation(sentence):
"""按照中文次级标点符号分割句子"""
# 常见的中文次级分隔符号:逗号、分号等
parts = re.split(r'([,,;;])', sentence)
# 将标点符号与前面的词语合并,避免单独标点符号成为一个部分
merged_parts = []
for part in parts:
if part and not part in ',,;;':
merged_parts.append(part)
elif merged_parts:
merged_parts[-1] += part
return merged_parts
def split_long_sentences(sentence, max_length=30):
"""如果中文句子太长,先按标点分割,必要时使用jieba进行分词并分割"""
if len(sentence) > max_length and is_chinese(sentence):
# 首先尝试按照次级标点符号分割
preliminary_parts = split_by_punctuation(sentence)
new_sentences = []
for part in preliminary_parts:
# 如果部分仍然太长,使用jieba进行分词
if len(part) > max_length:
words = jieba.lcut(part)
current_sentence = ""
for word in words:
if len(current_sentence) + len(word) > max_length:
new_sentences.append(current_sentence)
current_sentence = word
else:
current_sentence += word
if current_sentence:
new_sentences.append(current_sentence)
else:
new_sentences.append(part)
return new_sentences
return [sentence] # 如果句子不长或不是中文,直接返回
def extract_and_convert(text):
# 使用正则表达式找出所有英文单词
english_parts = re.findall(r'\b[A-Za-z]+\b', text) # \b为单词边界标识
# 对每个英文单词进行片假名转换
kana_parts = ['\n{}\n'.format(romajitable.to_kana(word).katakana) for word in english_parts]
# 替换原文本中的英文部分
for eng, kana in zip(english_parts, kana_parts):
text = text.replace(eng, kana, 1) # 限制每次只替换一个实例
return text
# 推理工具
def download_unidic():
try:
Tagger()
print("Tagger launch successfully.")
except Exception as e:
print("UNIDIC dictionary not found, downloading...")
subprocess.run([sys.executable, "-m", "unidic", "download"])
print("Download completed.")
def kanji_to_hiragana(text):
global tagger
output = ""
# 更新正则表达式以更准确地区分文本和标点符号
segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE)
for segment in segments:
if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment):
# 如果是单词或汉字,转换为平假名
for word in tagger(segment):
kana = word.feature.kana or word.surface
hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名
output += hiragana
else:
# 如果是标点符号,保持不变
output += segment
return output
def get_net_g(model_path: str, device: str, hps):
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
style_text = None if style_text == "" else style_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(
norm_text, word2ph, language_str, device, style_text, style_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.randn(1024, len(phone))
en_bert = torch.randn(1024, len(phone))
elif language_str == "JP":
bert = torch.randn(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.randn(1024, len(phone))
elif language_str == "EN":
bert = torch.randn(1024, len(phone))
ja_bert = torch.randn(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text=None,
style_weight=0.7,
language = "Auto",
mode = 'pyopenjtalk-V2.3',
skip_start=False,
skip_end=False,
):
if style_text == None:
style_text = ""
style_weight=0,
if mode == 'fugashi-V2.3':
text = kanji_to_hiragana(text) if is_japanese(text) else text
if language == "JP":
text = translate(text,"jp")
if language == "ZH":
text = translate(text,"zh")
if language == "Auto":
language= 'JP' if is_japanese(text) else 'ZH'
#print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{sid}:{language}:{mode}:{skip_start}:{skip_end}')
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
style_text=style_text,
style_weight=style_weight,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
# emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Success.")
return audio
def loadmodel(model):
_ = net_g.eval()
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
return "success"
def generate_audio_and_srt_for_group(
group,
outputPath,
group_index,
sampling_rate,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speakerList,
silenceTime,
language,
mode,
skip_start,
skip_end,
style_text,
style_weight,
):
audio_fin = []
ass_entries = []
start_time = 0
#speaker = random.choice(cara_list)
ass_header = """[Script Info]
; 我没意见
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""
for sentence in group:
try:
if len(sentence) > 1:
FakeSpeaker = sentence.split("|")[0]
print(FakeSpeaker)
SpeakersList = re.split('\n', speakerList)
if FakeSpeaker in list(hps.data.spk2id.keys()):
speaker = FakeSpeaker
for i in SpeakersList:
if FakeSpeaker == i.split("|")[1]:
speaker = i.split("|")[0]
if sentence != '\n':
text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。")
if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3':
#print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{speaker}:{language}:{mode}:{skip_start}:{skip_end}')
audio = infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
style_text,
style_weight,
language,
mode,
skip_start,
skip_end,
)
silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
duration = len(audio) / sampling_rate
print(duration)
end_time = start_time + duration + silenceTime
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
start_time = end_time
except:
pass
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')
write(wav_filename, sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin)))
with open(ass_filename, 'w', encoding='utf-8') as f:
f.write(ass_header + '\n'.join(ass_entries))
return (hps.data.sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin)))
def generate_audio(
inputFile,
groupSize,
filepath,
silenceTime,
speakerList,
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text=None,
style_weight=0.7,
language = "Auto",
mode = 'pyopenjtalk-V2.3',
sentence_mode = 'sentence',
skip_start=False,
skip_end=False,
):
if inputFile:
text = extract_text_from_file(inputFile.name)
sentence_mode = 'paragraph'
if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3':
if sentence_mode == 'sentence':
audio = infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text,
style_weight,
language,
mode,
skip_start,
skip_end,
)
return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))
if sentence_mode == 'paragraph':
GROUP_SIZE = groupSize
directory_path = filepath if torch.cuda.is_available() else "books"
if os.path.exists(directory_path):
shutil.rmtree(directory_path)
os.makedirs(directory_path)
if language == 'Auto':
sentences = extrac(extract_and_convert(text))
else:
sentences = extrac(text)
for i in range(0, len(sentences), GROUP_SIZE):
group = sentences[i:i+GROUP_SIZE]
if speakerList == "":
speakerList = "无"
result = generate_audio_and_srt_for_group(
group,
directory_path,
i//GROUP_SIZE + 1,
44100,
sid,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speakerList,
silenceTime,
language,
mode,
skip_start,
skip_end,
style_text,
style_weight,
)
if not torch.cuda.is_available():
return result
return result
#url = f'{webBase[mode]}?text={text}&speaker={sid}&sdp_ratio={sdp_ratio}&noise_scale={noise_scale}&noise_scale_w={noise_scale_w}&length_scale={length_scale}&language={language}&skip_start={skip_start}&skip_end={skip_end}'
#print(url)
#res = requests.get(url)
#改用post
res = requests.post(webBase[mode], json = {
"groupSize": groupSize,
"filepath": filepath,
"silenceTime": silenceTime,
"speakerList": speakerList,
"text": text,
"speaker": sid,
"sdp_ratio": sdp_ratio,
"noise_scale": noise_scale,
"noise_scale_w": noise_scale_w,
"length_scale": length_scale,
"language": language,
"skip_start": skip_start,
"skip_end": skip_end,
"mode": mode,
"sentence_mode": sentence_mode,
"style_text": style_text,
"style_weight": style_weight
})
audio = res.content
with open('output.wav', 'wb') as code:
code.write(audio)
file_path = "output.wav"
return file_path
if __name__ == "__main__":
download_unidic()
tagger = Tagger()
for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'):
for filename in filenames:
modelPaths.append(os.path.join(dirpath, filename))
hps = utils.get_hparams_from_file('Data/BangDream/config.json')
net_g = get_net_g(
model_path=modelPaths[-1], device=device, hps=hps
)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
with gr.Blocks() as app:
gr.Markdown(value="""
([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n
[好玩的](http://love.soyorin.top/)\n
该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n
API: https://mahiruoshi-bert-vits2-api.hf.space/ \n
调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n
推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n
二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n
训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n
BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n
!!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""")
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">'
'</div>'
)
with gr.Accordion(label="参数设定", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise:感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.667, step=0.01, label="Noise_W:音素长度"
)
skip_start = gr.Checkbox(label="skip_start")
skip_end = gr.Checkbox(label="skip_end")
speaker = gr.Dropdown(
choices=speakers, value=name, label="说话人"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
)
language = gr.Dropdown(
choices=languages, value="Auto", label="语言选择,若不选自动则会将输入语言翻译为日语或中文"
)
mode = gr.Dropdown(
choices=modes, value="pyopenjtalk-V2.3", label="TTS模式,合成少歌角色需要切换成 pyopenjtalk-V2.3-Katakana "
)
sentence_mode = gr.Dropdown(
choices=sentence_modes, value="sentence", label="文本合成模式"
)
with gr.Accordion(label="扩展选项", open=False):
inputFile = gr.UploadButton(label="txt文件输入")
speakerList = gr.TextArea(
label="角色对应表,如果你记不住角色名可以这样,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}",
value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
)
groupSize = gr.Slider(
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大句子数"
)
filepath = gr.TextArea(
label="本地合成时的音频存储文件夹(会清空文件夹,别把C盘删了)",
value = "D:/audiobook/book1",
)
silenceTime = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔"
)
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
btnMod = gr.Button("载入模型")
statusa = gr.TextArea(label = "模型加载状态")
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
with gr.Column():
text = gr.TextArea(
label="文本输入,可用'|'分割说话人和文本,注意换行",
info="输入纯日语或者中文",
#placeholder=f"{name}|你觉得你是职业歌手吗\n真白|我觉得我是",
value=f"{name}|你觉得你是职业歌手吗\n真白|我觉得我是"
)
style_text = gr.Textbox(
label="情感辅助文本",
info="语言保持跟主文本一致,文本可以参考训练集:https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/filelists/Mygo.list)",
placeholder="使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n"
"**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)"
)
style_weight = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Weight",
info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本",
)
btn = gr.Button("点击生成", variant="primary")
audio_output = gr.Audio(label="Output Audio")
btntran = gr.Button("快速中翻日")
translateResult = gr.TextArea(label="使用百度翻译",placeholder="从这里复制翻译后的文本")
btntran.click(translate, inputs=[text], outputs = [translateResult])
btn.click(
generate_audio,
inputs=[
inputFile,
groupSize,
filepath,
silenceTime,
speakerList,
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
style_text,
style_weight,
language,
mode,
sentence_mode,
skip_start,
skip_end
],
outputs=[audio_output],
)
print("推理页面已开启!")
app.launch() |