|
|
|
|
|
import os |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
|
|
|
|
|
|
CUSTOM_CSS = """ |
|
.gradio-container { |
|
background: linear-gradient(to right, #FFDEE9, #B5FFFC); |
|
} |
|
""" |
|
|
|
|
|
|
|
|
|
DESCRIPTION = """# Bonjour Dans le chat du consentement |
|
Mistral-7B Instruct Demo |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += ( |
|
"\n<p style='color:red;'>Running on CPU - This is likely too large to run effectively.</p>" |
|
) |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "mistralai/Mistral-7B-Instruct-v0.3" |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
|
|
def generate( |
|
message: str, |
|
chat_history: list[dict], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
""" |
|
This function handles streaming chat text as the model generates it. |
|
Uses Mistral's 'apply_chat_template' to handle chat-style prompting. |
|
""" |
|
conversation = [*chat_history, {"role": "user", "content": message}] |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning( |
|
f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens." |
|
) |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer( |
|
tokenizer, |
|
timeout=20.0, |
|
skip_prompt=True, |
|
skip_special_tokens=True |
|
) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
|
|
yield "".join(outputs) |
|
|
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
description=DESCRIPTION, |
|
css=CUSTOM_CSS, |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["Hello there! How are you doing?"], |
|
["Can you explain briefly what the Python programming language is?"], |
|
["Explain the plot of Cinderella in a sentence."], |
|
["How many hours does it take a man to eat a Helicopter?"], |
|
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], |
|
], |
|
type="messages", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch(share=True) |