Mahavaury2's picture
Update app.py
0826c6b verified
raw
history blame
3.37 kB
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
#
# 1) Custom Pastel Gradient CSS
#
CUSTOM_CSS = """
.gradio-container {
background: linear-gradient(to right, #FFDEE9, #B5FFFC);
}
"""
#
# 2) Description: Add French greeting, plus any info
#
DESCRIPTION = """# Bonjour Dans le chat du consentement
Mistral-7B Instruct Demo
"""
if not torch.cuda.is_available():
DESCRIPTION += (
"\n<p style='color:red;'>Running on CPU - This is likely too large to run effectively.</p>"
)
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
#
# 3) Load Mistral-7B Instruct (requires gating, GPU recommended)
#
if torch.cuda.is_available():
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True, # Might be needed for custom code
use_auth_token=True
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
use_auth_token=True
)
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
"""
This function handles streaming chat text as the model generates it.
Uses Mistral's 'apply_chat_template' to handle chat-style prompting.
"""
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(
f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens."
)
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=20.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
# Stream partial output as it's generated
yield "".join(outputs)
#
# 4) Build the Chat Interface without additional inputs
#
demo = gr.ChatInterface(
fn=generate,
description=DESCRIPTION,
css=CUSTOM_CSS,
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly what the Python programming language is?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
type="messages",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)