Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI, Request | |
| from fastapi.responses import HTMLResponse, JSONResponse | |
| import uvicorn | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| app = FastAPI() | |
| # Chargement du modèle uniquement si CUDA est disponible | |
| if torch.cuda.is_available(): | |
| model_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
| model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| else: | |
| model = None | |
| tokenizer = None | |
| MAX_INPUT_TOKEN_LENGTH = 4096 | |
| def generate_response(message: str, history: list) -> str: | |
| conversation = history + [{"role": "user", "content": message}] | |
| input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = { | |
| "input_ids": input_ids, | |
| "streamer": streamer, | |
| "max_new_tokens": 1024, | |
| "do_sample": True, | |
| "top_p": 0.9, | |
| "top_k": 50, | |
| "temperature": 0.6, | |
| "num_beams": 1, | |
| "repetition_penalty": 1.2, | |
| } | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| response_text = "" | |
| for text in streamer: | |
| response_text += text | |
| return response_text | |
| async def chat_endpoint(request: Request): | |
| data = await request.json() | |
| message = data.get("message", "") | |
| # Utilisation d'un historique vide pour simplifier | |
| response_text = generate_response(message, history=[]) | |
| return JSONResponse({"response": response_text}) | |
| async def root(): | |
| with open("index.html", "r", encoding="utf-8") as f: | |
| html_content = f.read() | |
| return HTMLResponse(content=html_content, status_code=200) | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |