Spaces:
Runtime error
Runtime error
File size: 3,220 Bytes
8824f88 8fa5ce9 8824f88 8fa5ce9 a7f5e8b 8fa5ce9 d8802c6 8fa5ce9 d8802c6 8fa5ce9 d8802c6 8fa5ce9 b507d58 94c9a27 8fa5ce9 94c9a27 b507d58 8fa5ce9 d8802c6 8fa5ce9 d8802c6 8fa5ce9 d8802c6 8fa5ce9 8824f88 8fa5ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
#!/usr/bin/env python
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """
<h1 style="color:black;">Mistral-7B v0.3</h1>
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
if torch.cuda.is_available():
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# CSS pour appliquer le dégradé pastel à TOUTE la page
custom_css = """
html, body {
height: 100%;
margin: 0;
padding: 0;
background: linear-gradient(135deg, #FDE2E2, #E2ECFD) !important;
}
"""
# Questions prédéfinies
predefined_examples = [
["1 - C’est quoi le consentement ? Comment savoir si ma copine a envie de moi ?"], # noqa: RUF001
["2 - C’est quoi une agression sexuelle ?"],
["3 - C’est quoi un viol ?"],
["4 - C’est quoi un attouchement ?"],
["5 - C’est quoi un harcèlement sexuel ?"],
["6 - Est ce illégal de visionner du porno ?"],
["7 - Mon copain me demande un nude, dois-je le faire ?"],
["8 - Mon ancien copain me menace de poster des photos de moi nue sur internet, que faire ?"],
[
"9 - Que puis-je faire si un membre de ma famille me touche d’une manière bizarre, mais que j’ai peur de parler ou de ne pas être cru ?"
],
]
demo = gr.ChatInterface(
fn=generate,
type="messages",
description=DESCRIPTION,
css=custom_css, # On applique le CSS pastel global
examples=predefined_examples,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|