# import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") # ## None type # def respond( # message: str, # history: list[tuple[str, str]], # This will not be used # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # messages = [{"role": "system", "content": system_message}] # # Append only the latest user message # messages.append({"role": "user", "content": message}) # response = "" # try: # # Generate response from the model # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # if message.choices[0].delta.content is not None: # token = message.choices[0].delta.content # response += token # yield response # except Exception as e: # yield f"An error occurred: {e}" # ], # ) # if __name__ == "__main__": # demo.launch() ##Running smothly CHATBOT # import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") # def respond( # message: str, # history: list[tuple[str, str]], # This will not be used # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # # Build the messages list # messages = [{"role": "system", "content": system_message}] # messages.append({"role": "user", "content": message}) # response = "" # try: # # Generate response from the model # for msg in client.chat_completion( # messages=messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # if msg.choices[0].delta.content is not None: # token = msg.choices[0].delta.content # response += token # yield response # except Exception as e: # yield f"An error occurred: {e}" # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() ### 26 aug Use a pipeline as a high-level Logic # import spaces # import os # import subprocess # from llama_cpp import Llama # from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType # from llama_cpp_agent.providers import LlamaCppPythonProvider # from llama_cpp_agent.chat_history import BasicChatHistory # from llama_cpp_agent.chat_history.messages import Roles # import gradio as gr # from huggingface_hub import hf_hub_download # huggingface_token = os.getenv("HF_TOKEN") # # Download the Meta-Llama-3.1-8B-Instruct model # hf_hub_download( # repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF", # filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf", # local_dir="./models", # token=huggingface_token # ) # llm = None # llm_model = None # @spaces.GPU(duration=120) # def respond( # message, # history: list[tuple[str, str]], # model, # system_message, # max_tokens, # temperature, # top_p, # top_k, # repeat_penalty, # ): # chat_template = MessagesFormatterType.GEMMA_2 # global llm # global llm_model # # Load model only if it's not already loaded or if a new model is selected # if llm is None or llm_model != model: # try: # llm = Llama( # model_path=f"models/{model}", # flash_attn=True, # n_gpu_layers=81, # Adjust based on available GPU resources # n_batch=1024, # n_ctx=8192, # ) # llm_model = model # except Exception as e: # return f"Error loading model: {str(e)}" # provider = LlamaCppPythonProvider(llm) # agent = LlamaCppAgent( # provider, # system_prompt=f"{system_message}", # predefined_messages_formatter_type=chat_template, # debug_output=True # ) # settings = provider.get_provider_default_settings() # settings.temperature = temperature # settings.top_k = top_k # settings.top_p = top_p # settings.max_tokens = max_tokens # settings.repeat_penalty = repeat_penalty # settings.stream = True # messages = BasicChatHistory() # # Add user and assistant messages to the history # for msn in history: # user = {'role': Roles.user, 'content': msn[0]} # assistant = {'role': Roles.assistant, 'content': msn[1]} # messages.add_message(user) # messages.add_message(assistant) # # Stream the response # try: # stream = agent.get_chat_response( # message, # llm_sampling_settings=settings, # chat_history=messages, # returns_streaming_generator=True, # print_output=False # ) # outputs = "" # for output in stream: # outputs += output # yield outputs # except Exception as e: # yield f"Error during response generation: {str(e)}" # description = """
Using the Meta-Llama-3.1-8B-Instruct Model
""" # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Dropdown([ # 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf' # ], # value="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf", # label="Model" # ), # gr.Textbox(value="You are a helpful assistant.", label="System message"), # gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p", # ), # gr.Slider( # minimum=0, # maximum=100, # value=40, # step=1, # label="Top-k", # ), # gr.Slider( # minimum=0.0, # maximum=2.0, # value=1.1, # step=0.1, # label="Repetition penalty", # ), # ], # retry_btn="Retry", # undo_btn="Undo", # clear_btn="Clear", # submit_btn="Send", # title="Chat with Meta-Llama-3.1-8B-Instruct using llama.cpp", # description=description, # chatbot=gr.Chatbot( # scale=1, # likeable=False, # show_copy_button=True # ) # ) # if __name__ == "__main__": # demo.launch() ####03 3.1 8b import os import time import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig import gradio as gr from threading import Thread MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"] HF_TOKEN = os.environ.get("HF_API_TOKEN",None) print(HF_TOKEN,"######$$$$$$$$$$$$$$$") MODEL = os.environ.get("MODEL_ID","meta-llama/Meta-Llama-3.1-8B-Instruct") TITLE = "Hi! How can I help you today?