Spaces:
Sleeping
Sleeping
Example_updated_with_Lib
Browse files
app.py
CHANGED
@@ -112,158 +112,6 @@
|
|
112 |
# if __name__ == "__main__":
|
113 |
# demo.launch()
|
114 |
|
115 |
-
### 26 aug Use a pipeline as a high-level Logic
|
116 |
-
# import spaces
|
117 |
-
# import os
|
118 |
-
# import subprocess
|
119 |
-
# from llama_cpp import Llama
|
120 |
-
# from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
121 |
-
# from llama_cpp_agent.providers import LlamaCppPythonProvider
|
122 |
-
# from llama_cpp_agent.chat_history import BasicChatHistory
|
123 |
-
# from llama_cpp_agent.chat_history.messages import Roles
|
124 |
-
# import gradio as gr
|
125 |
-
# from huggingface_hub import hf_hub_download
|
126 |
-
|
127 |
-
# huggingface_token = os.getenv("HF_TOKEN")
|
128 |
-
|
129 |
-
# # Download the Meta-Llama-3.1-8B-Instruct model
|
130 |
-
# hf_hub_download(
|
131 |
-
# repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
|
132 |
-
# filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
|
133 |
-
# local_dir="./models",
|
134 |
-
# token=huggingface_token
|
135 |
-
# )
|
136 |
-
|
137 |
-
# llm = None
|
138 |
-
# llm_model = None
|
139 |
-
|
140 |
-
# @spaces.GPU(duration=120)
|
141 |
-
# def respond(
|
142 |
-
# message,
|
143 |
-
# history: list[tuple[str, str]],
|
144 |
-
# model,
|
145 |
-
# system_message,
|
146 |
-
# max_tokens,
|
147 |
-
# temperature,
|
148 |
-
# top_p,
|
149 |
-
# top_k,
|
150 |
-
# repeat_penalty,
|
151 |
-
# ):
|
152 |
-
# chat_template = MessagesFormatterType.GEMMA_2
|
153 |
-
|
154 |
-
# global llm
|
155 |
-
# global llm_model
|
156 |
-
|
157 |
-
# # Load model only if it's not already loaded or if a new model is selected
|
158 |
-
# if llm is None or llm_model != model:
|
159 |
-
# try:
|
160 |
-
# llm = Llama(
|
161 |
-
# model_path=f"models/{model}",
|
162 |
-
# flash_attn=True,
|
163 |
-
# n_gpu_layers=81, # Adjust based on available GPU resources
|
164 |
-
# n_batch=1024,
|
165 |
-
# n_ctx=8192,
|
166 |
-
# )
|
167 |
-
# llm_model = model
|
168 |
-
# except Exception as e:
|
169 |
-
# return f"Error loading model: {str(e)}"
|
170 |
-
|
171 |
-
# provider = LlamaCppPythonProvider(llm)
|
172 |
-
|
173 |
-
# agent = LlamaCppAgent(
|
174 |
-
# provider,
|
175 |
-
# system_prompt=f"{system_message}",
|
176 |
-
# predefined_messages_formatter_type=chat_template,
|
177 |
-
# debug_output=True
|
178 |
-
# )
|
179 |
-
|
180 |
-
# settings = provider.get_provider_default_settings()
|
181 |
-
# settings.temperature = temperature
|
182 |
-
# settings.top_k = top_k
|
183 |
-
# settings.top_p = top_p
|
184 |
-
# settings.max_tokens = max_tokens
|
185 |
-
# settings.repeat_penalty = repeat_penalty
|
186 |
-
# settings.stream = True
|
187 |
-
|
188 |
-
# messages = BasicChatHistory()
|
189 |
-
|
190 |
-
# # Add user and assistant messages to the history
|
191 |
-
# for msn in history:
|
192 |
-
# user = {'role': Roles.user, 'content': msn[0]}
|
193 |
-
# assistant = {'role': Roles.assistant, 'content': msn[1]}
|
194 |
-
# messages.add_message(user)
|
195 |
-
# messages.add_message(assistant)
|
196 |
-
|
197 |
-
# # Stream the response
|
198 |
-
# try:
|
199 |
-
# stream = agent.get_chat_response(
|
200 |
-
# message,
|
201 |
-
# llm_sampling_settings=settings,
|
202 |
-
# chat_history=messages,
|
203 |
-
# returns_streaming_generator=True,
|
204 |
-
# print_output=False
|
205 |
-
# )
|
206 |
-
|
207 |
-
# outputs = ""
|
208 |
-
# for output in stream:
|
209 |
-
# outputs += output
|
210 |
-
# yield outputs
|
211 |
-
# except Exception as e:
|
212 |
-
# yield f"Error during response generation: {str(e)}"
|
213 |
-
|
214 |
-
# description = """<p align="center">Using the Meta-Llama-3.1-8B-Instruct Model</p>"""
|
215 |
-
|
216 |
-
# demo = gr.ChatInterface(
|
217 |
-
# respond,
|
218 |
-
# additional_inputs=[
|
219 |
-
# gr.Dropdown([
|
220 |
-
# 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf'
|
221 |
-
# ],
|
222 |
-
# value="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
|
223 |
-
# label="Model"
|
224 |
-
# ),
|
225 |
-
# gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
226 |
-
# gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
|
227 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
228 |
-
# gr.Slider(
|
229 |
-
# minimum=0.1,
|
230 |
-
# maximum=1.0,
|
231 |
-
# value=0.95,
|
232 |
-
# step=0.05,
|
233 |
-
# label="Top-p",
|
234 |
-
# ),
|
235 |
-
# gr.Slider(
|
236 |
-
# minimum=0,
|
237 |
-
# maximum=100,
|
238 |
-
# value=40,
|
239 |
-
# step=1,
|
240 |
-
# label="Top-k",
|
241 |
-
# ),
|
242 |
-
# gr.Slider(
|
243 |
-
# minimum=0.0,
|
244 |
-
# maximum=2.0,
|
245 |
-
# value=1.1,
|
246 |
-
# step=0.1,
|
247 |
-
# label="Repetition penalty",
|
248 |
-
# ),
|
249 |
-
# ],
|
250 |
-
# retry_btn="Retry",
|
251 |
-
# undo_btn="Undo",
|
252 |
-
# clear_btn="Clear",
|
253 |
-
# submit_btn="Send",
|
254 |
-
# title="Chat with Meta-Llama-3.1-8B-Instruct using llama.cpp",
|
255 |
-
# description=description,
|
256 |
-
# chatbot=gr.Chatbot(
|
257 |
-
# scale=1,
|
258 |
-
# likeable=False,
|
259 |
-
# show_copy_button=True
|
260 |
-
# )
|
261 |
-
# )
|
262 |
-
|
263 |
-
# if __name__ == "__main__":
|
264 |
-
# demo.launch()
|
265 |
-
|
266 |
-
|
267 |
|
268 |
####03 3.1 8b
|
269 |
|
@@ -583,7 +431,7 @@
|
|
583 |
|
584 |
|
585 |
|
586 |
-
###
|
587 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
588 |
from PIL import Image
|
589 |
import requests
|
@@ -659,18 +507,7 @@ def bot_streaming(message, history, max_new_tokens=250):
|
|
659 |
yield buffer
|
660 |
|
661 |
|
662 |
-
demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama",
|
663 |
-
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
|
664 |
-
200],
|
665 |
-
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
|
666 |
-
250],
|
667 |
-
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
|
668 |
-
250],
|
669 |
-
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
|
670 |
-
250],
|
671 |
-
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
|
672 |
-
250],
|
673 |
-
],
|
674 |
textbox=gr.MultimodalTextbox(),
|
675 |
additional_inputs = [gr.Slider(
|
676 |
minimum=10,
|
|
|
112 |
# if __name__ == "__main__":
|
113 |
# demo.launch()
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
####03 3.1 8b
|
117 |
|
|
|
431 |
|
432 |
|
433 |
|
434 |
+
###OCT04 LLAMA3.2 Vision Model
|
435 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
436 |
from PIL import Image
|
437 |
import requests
|
|
|
507 |
yield buffer
|
508 |
|
509 |
|
510 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
textbox=gr.MultimodalTextbox(),
|
512 |
additional_inputs = [gr.Slider(
|
513 |
minimum=10,
|