Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -442,158 +442,24 @@
|
|
| 442 |
###########new clientkey
|
| 443 |
|
| 444 |
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
# import torch
|
| 449 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 450 |
-
# import gradio as gr
|
| 451 |
-
# from threading import Thread
|
| 452 |
-
|
| 453 |
-
# MODEL = "THUDM/LongWriter-llama3.1-8b"
|
| 454 |
-
|
| 455 |
-
# TITLE = "<h1><center>AreaX LLC-llama3.1-8b</center></h1>"
|
| 456 |
-
|
| 457 |
-
# PLACEHOLDER = """
|
| 458 |
-
# <center>
|
| 459 |
-
# <p>Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?</p>
|
| 460 |
-
# </center>
|
| 461 |
-
# """
|
| 462 |
-
|
| 463 |
-
# CSS = """
|
| 464 |
-
# .duplicate-button {
|
| 465 |
-
# margin: auto !important;
|
| 466 |
-
# color: white !important;
|
| 467 |
-
# background: black !important;
|
| 468 |
-
# border-radius: 100vh !important;
|
| 469 |
-
# }
|
| 470 |
-
# h3 {
|
| 471 |
-
# text-align: center;
|
| 472 |
-
# }
|
| 473 |
-
# """
|
| 474 |
-
|
| 475 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 476 |
-
|
| 477 |
-
# tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
|
| 478 |
-
# model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
| 479 |
-
# model = model.eval()
|
| 480 |
-
|
| 481 |
-
# @spaces.GPU()
|
| 482 |
-
# def stream_chat(
|
| 483 |
-
# message: str,
|
| 484 |
-
# history: list,
|
| 485 |
-
# system_prompt: str,
|
| 486 |
-
# temperature: float = 0.5,
|
| 487 |
-
# max_new_tokens: int = 32768,
|
| 488 |
-
# top_p: float = 1.0,
|
| 489 |
-
# top_k: int = 50,
|
| 490 |
-
# ):
|
| 491 |
-
# print(f'message: {message}')
|
| 492 |
-
# print(f'history: {history}')
|
| 493 |
-
|
| 494 |
-
# full_prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
| 495 |
-
# for prompt, answer in history:
|
| 496 |
-
# full_prompt += f"[INST]{prompt}[/INST]{answer}"
|
| 497 |
-
# full_prompt += f"[INST]{message}[/INST]"
|
| 498 |
-
|
| 499 |
-
# inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device)
|
| 500 |
-
# context_length = inputs.input_ids.shape[-1]
|
| 501 |
-
|
| 502 |
-
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
| 503 |
-
|
| 504 |
-
# generate_kwargs = dict(
|
| 505 |
-
# inputs=inputs.input_ids,
|
| 506 |
-
# max_new_tokens=max_new_tokens,
|
| 507 |
-
# do_sample=True,
|
| 508 |
-
# top_p=top_p,
|
| 509 |
-
# top_k=top_k,
|
| 510 |
-
# temperature=temperature,
|
| 511 |
-
# num_beams=1,
|
| 512 |
-
# streamer=streamer,
|
| 513 |
-
# )
|
| 514 |
-
|
| 515 |
-
# thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 516 |
-
# thread.start()
|
| 517 |
-
|
| 518 |
-
# buffer = ""
|
| 519 |
-
# for new_text in streamer:
|
| 520 |
-
# buffer += new_text
|
| 521 |
-
# yield buffer
|
| 522 |
-
|
| 523 |
-
# chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
| 524 |
-
|
| 525 |
-
# with gr.Blocks(css=CSS, theme="soft") as demo:
|
| 526 |
-
# gr.HTML(TITLE)
|
| 527 |
-
# gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
| 528 |
-
# gr.ChatInterface(
|
| 529 |
-
# fn=stream_chat,
|
| 530 |
-
# chatbot=chatbot,
|
| 531 |
-
# fill_height=True,
|
| 532 |
-
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
| 533 |
-
# additional_inputs=[
|
| 534 |
-
# gr.Textbox(
|
| 535 |
-
# value="You are a helpful assistant capable of generating long-form content.",
|
| 536 |
-
# label="System Prompt",
|
| 537 |
-
# render=False,
|
| 538 |
-
# ),
|
| 539 |
-
# gr.Slider(
|
| 540 |
-
# minimum=0,
|
| 541 |
-
# maximum=1,
|
| 542 |
-
# step=0.1,
|
| 543 |
-
# value=0.5,
|
| 544 |
-
# label="Temperature",
|
| 545 |
-
# render=False,
|
| 546 |
-
# ),
|
| 547 |
-
# gr.Slider(
|
| 548 |
-
# minimum=1024,
|
| 549 |
-
# maximum=32768,
|
| 550 |
-
# step=1024,
|
| 551 |
-
# value=32768,
|
| 552 |
-
# label="Max new tokens",
|
| 553 |
-
# render=False,
|
| 554 |
-
# ),
|
| 555 |
-
# gr.Slider(
|
| 556 |
-
# minimum=0.0,
|
| 557 |
-
# maximum=1.0,
|
| 558 |
-
# step=0.1,
|
| 559 |
-
# value=1.0,
|
| 560 |
-
# label="Top p",
|
| 561 |
-
# render=False,
|
| 562 |
-
# ),
|
| 563 |
-
# gr.Slider(
|
| 564 |
-
# minimum=1,
|
| 565 |
-
# maximum=100,
|
| 566 |
-
# step=1,
|
| 567 |
-
# value=50,
|
| 568 |
-
# label="Top k",
|
| 569 |
-
# render=False,
|
| 570 |
-
# ),
|
| 571 |
-
# ],
|
| 572 |
-
# examples=[
|
| 573 |
-
# ["Write a 5000-word comprehensive guide on machine learning for beginners."],
|
| 574 |
-
# ["Create a detailed 3000-word business plan for a sustainable energy startup."],
|
| 575 |
-
# ["Compose a 2000-word short story set in a futuristic underwater city."],
|
| 576 |
-
# ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."],
|
| 577 |
-
# ],
|
| 578 |
-
# cache_examples=False,
|
| 579 |
-
# )
|
| 580 |
-
|
| 581 |
-
# if __name__ == "__main__":
|
| 582 |
-
# demo.launch()
|
| 583 |
-
|
| 584 |
import torch
|
| 585 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 586 |
import gradio as gr
|
| 587 |
from threading import Thread
|
| 588 |
|
| 589 |
-
# Model and constants
|
| 590 |
MODEL = "THUDM/LongWriter-llama3.1-8b"
|
|
|
|
| 591 |
TITLE = "<h1><center>AreaX LLC-llama3.1-8b</center></h1>"
|
|
|
|
| 592 |
PLACEHOLDER = """
|
| 593 |
<center>
|
| 594 |
<p>Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?</p>
|
| 595 |
</center>
|
| 596 |
"""
|
|
|
|
| 597 |
CSS = """
|
| 598 |
.duplicate-button {
|
| 599 |
margin: auto !important;
|
|
@@ -606,61 +472,54 @@ h3 {
|
|
| 606 |
}
|
| 607 |
"""
|
| 608 |
|
| 609 |
-
# Check device
|
| 610 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 611 |
|
| 612 |
-
# Load model and tokenizer
|
| 613 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
|
| 614 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
|
|
|
| 615 |
|
|
|
|
| 616 |
def stream_chat(
|
| 617 |
message: str,
|
| 618 |
history: list,
|
| 619 |
system_prompt: str,
|
| 620 |
temperature: float = 0.5,
|
| 621 |
-
max_new_tokens: int =
|
| 622 |
top_p: float = 1.0,
|
| 623 |
top_k: int = 50,
|
| 624 |
):
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
buffer
|
| 656 |
-
|
| 657 |
-
buffer += new_text
|
| 658 |
-
yield buffer
|
| 659 |
-
|
| 660 |
-
except Exception as e:
|
| 661 |
-
yield f"An error occurred: {str(e)}"
|
| 662 |
-
|
| 663 |
-
# Gradio setup
|
| 664 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
| 665 |
|
| 666 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
@@ -687,9 +546,9 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
| 687 |
),
|
| 688 |
gr.Slider(
|
| 689 |
minimum=1024,
|
| 690 |
-
maximum=
|
| 691 |
step=1024,
|
| 692 |
-
value=
|
| 693 |
label="Max new tokens",
|
| 694 |
render=False,
|
| 695 |
),
|
|
@@ -710,7 +569,14 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
| 710 |
render=False,
|
| 711 |
),
|
| 712 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 713 |
)
|
| 714 |
|
| 715 |
if __name__ == "__main__":
|
| 716 |
-
demo.launch()
|
|
|
|
| 442 |
###########new clientkey
|
| 443 |
|
| 444 |
|
| 445 |
+
import os
|
| 446 |
+
import time
|
| 447 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
import torch
|
| 449 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 450 |
import gradio as gr
|
| 451 |
from threading import Thread
|
| 452 |
|
|
|
|
| 453 |
MODEL = "THUDM/LongWriter-llama3.1-8b"
|
| 454 |
+
|
| 455 |
TITLE = "<h1><center>AreaX LLC-llama3.1-8b</center></h1>"
|
| 456 |
+
|
| 457 |
PLACEHOLDER = """
|
| 458 |
<center>
|
| 459 |
<p>Hi! I'm AreaX AI Agent, capable of generating 10,000+ words. How can I assist you today?</p>
|
| 460 |
</center>
|
| 461 |
"""
|
| 462 |
+
|
| 463 |
CSS = """
|
| 464 |
.duplicate-button {
|
| 465 |
margin: auto !important;
|
|
|
|
| 472 |
}
|
| 473 |
"""
|
| 474 |
|
|
|
|
| 475 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 476 |
|
|
|
|
| 477 |
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
|
| 478 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
| 479 |
+
model = model.eval()
|
| 480 |
|
| 481 |
+
@spaces.GPU()
|
| 482 |
def stream_chat(
|
| 483 |
message: str,
|
| 484 |
history: list,
|
| 485 |
system_prompt: str,
|
| 486 |
temperature: float = 0.5,
|
| 487 |
+
max_new_tokens: int = 32768,
|
| 488 |
top_p: float = 1.0,
|
| 489 |
top_k: int = 50,
|
| 490 |
):
|
| 491 |
+
print(f'message: {message}')
|
| 492 |
+
print(f'history: {history}')
|
| 493 |
+
|
| 494 |
+
full_prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n"
|
| 495 |
+
for prompt, answer in history:
|
| 496 |
+
full_prompt += f"[INST]{prompt}[/INST]{answer}"
|
| 497 |
+
full_prompt += f"[INST]{message}[/INST]"
|
| 498 |
+
|
| 499 |
+
inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device)
|
| 500 |
+
context_length = inputs.input_ids.shape[-1]
|
| 501 |
+
|
| 502 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
| 503 |
+
|
| 504 |
+
generate_kwargs = dict(
|
| 505 |
+
inputs=inputs.input_ids,
|
| 506 |
+
max_new_tokens=max_new_tokens,
|
| 507 |
+
do_sample=True,
|
| 508 |
+
top_p=top_p,
|
| 509 |
+
top_k=top_k,
|
| 510 |
+
temperature=temperature,
|
| 511 |
+
num_beams=1,
|
| 512 |
+
streamer=streamer,
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 516 |
+
thread.start()
|
| 517 |
+
|
| 518 |
+
buffer = ""
|
| 519 |
+
for new_text in streamer:
|
| 520 |
+
buffer += new_text
|
| 521 |
+
yield buffer
|
| 522 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
| 524 |
|
| 525 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
|
|
| 546 |
),
|
| 547 |
gr.Slider(
|
| 548 |
minimum=1024,
|
| 549 |
+
maximum=32768,
|
| 550 |
step=1024,
|
| 551 |
+
value=32768,
|
| 552 |
label="Max new tokens",
|
| 553 |
render=False,
|
| 554 |
),
|
|
|
|
| 569 |
render=False,
|
| 570 |
),
|
| 571 |
],
|
| 572 |
+
# examples=[
|
| 573 |
+
# ["Write a 5000-word comprehensive guide on machine learning for beginners."],
|
| 574 |
+
# ["Create a detailed 3000-word business plan for a sustainable energy startup."],
|
| 575 |
+
# ["Compose a 2000-word short story set in a futuristic underwater city."],
|
| 576 |
+
# ["Develop a 4000-word research proposal on the potential effects of climate change on global food security."],
|
| 577 |
+
# ],
|
| 578 |
+
# cache_examples=False,
|
| 579 |
)
|
| 580 |
|
| 581 |
if __name__ == "__main__":
|
| 582 |
+
demo.launch()
|