File size: 12,623 Bytes
61d946f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c364eb
61d946f
7c364eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783efce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ba4d9
65baa5e
783efce
 
 
 
65baa5e
783efce
 
 
a283e76
09c9b33
474d856
f6ba4d9
783efce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65baa5e
783efce
 
65baa5e
783efce
 
 
 
 
 
 
 
 
 
 
 
65baa5e
783efce
65baa5e
783efce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65baa5e
783efce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ba4d9
 
 
 
 
 
 
65baa5e
783efce
65baa5e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# ## None type 
# def respond(
#     message: str,
#     history: list[tuple[str, str]],  # This will not be used
#     system_message: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
# ):
#     messages = [{"role": "system", "content": system_message}]
    
#     # Append only the latest user message





#     messages.append({"role": "user", "content": message})

#     response = ""

#     try:
#         # Generate response from the model
#         for message in client.chat_completion(
#             messages,
#             max_tokens=max_tokens,
#             stream=True,
#             temperature=temperature,
#             top_p=top_p,
#         ):
#             if message.choices[0].delta.content is not None:
#                 token = message.choices[0].delta.content
#                 response += token
#             yield response
#     except Exception as e:
#         yield f"An error occurred: {e}"
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()


##Running smothly CHATBOT

# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

# def respond(
#     message: str,
#     history: list[tuple[str, str]],  # This will not be used
#     system_message: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
# ):
#     # Build the messages list
#     messages = [{"role": "system", "content": system_message}]
#     messages.append({"role": "user", "content": message})

#     response = ""

#     try:
#         # Generate response from the model
#         for msg in client.chat_completion(
#             messages=messages,
#             max_tokens=max_tokens,
#             stream=True,
#             temperature=temperature,
#             top_p=top_p,
#         ):
#             if msg.choices[0].delta.content is not None:
#                 token = msg.choices[0].delta.content
#                 response += token
#             yield response
#     except Exception as e:
#         yield f"An error occurred: {e}"

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )

# if __name__ == "__main__":
#     demo.launch()

### 26 aug Use a pipeline as a high-level Logic
# import spaces
# import os
# import subprocess
# from llama_cpp import Llama
# from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
# from llama_cpp_agent.providers import LlamaCppPythonProvider
# from llama_cpp_agent.chat_history import BasicChatHistory
# from llama_cpp_agent.chat_history.messages import Roles
# import gradio as gr
# from huggingface_hub import hf_hub_download

# huggingface_token = os.getenv("HF_TOKEN")

# # Download the Meta-Llama-3.1-8B-Instruct model
# hf_hub_download(
#     repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
#     filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
#     local_dir="./models",
#     token=huggingface_token
# )

# llm = None
# llm_model = None

# @spaces.GPU(duration=120)
# def respond(
#     message,
#     history: list[tuple[str, str]],
#     model,
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
#     top_k,
#     repeat_penalty,
# ):
#     chat_template = MessagesFormatterType.GEMMA_2

#     global llm
#     global llm_model
    
#     # Load model only if it's not already loaded or if a new model is selected
#     if llm is None or llm_model != model:
#         try:
#             llm = Llama(
#                 model_path=f"models/{model}",
#                 flash_attn=True,
#                 n_gpu_layers=81,  # Adjust based on available GPU resources
#                 n_batch=1024,
#                 n_ctx=8192,
#             )
#             llm_model = model
#         except Exception as e:
#             return f"Error loading model: {str(e)}"

#     provider = LlamaCppPythonProvider(llm)

#     agent = LlamaCppAgent(
#         provider,
#         system_prompt=f"{system_message}",
#         predefined_messages_formatter_type=chat_template,
#         debug_output=True
#     )
    
#     settings = provider.get_provider_default_settings()
#     settings.temperature = temperature
#     settings.top_k = top_k
#     settings.top_p = top_p
#     settings.max_tokens = max_tokens
#     settings.repeat_penalty = repeat_penalty
#     settings.stream = True

#     messages = BasicChatHistory()

#     # Add user and assistant messages to the history
#     for msn in history:
#         user = {'role': Roles.user, 'content': msn[0]}
#         assistant = {'role': Roles.assistant, 'content': msn[1]}
#         messages.add_message(user)
#         messages.add_message(assistant)
    
#     # Stream the response
#     try:
#         stream = agent.get_chat_response(
#             message,
#             llm_sampling_settings=settings,
#             chat_history=messages,
#             returns_streaming_generator=True,
#             print_output=False
#         )
        
#         outputs = ""
#         for output in stream:
#             outputs += output
#             yield outputs
#     except Exception as e:
#         yield f"Error during response generation: {str(e)}"

# description = """<p align="center">Using the Meta-Llama-3.1-8B-Instruct Model</p>"""

# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Dropdown([
#                 'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf'
#             ],
#             value="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
#             label="Model"
#         ),
#         gr.Textbox(value="You are a helpful assistant.", label="System message"),
#         gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p",
#         ),
#         gr.Slider(
#             minimum=0,
#             maximum=100,
#             value=40,
#             step=1,
#             label="Top-k",
#         ),
#         gr.Slider(
#             minimum=0.0,
#             maximum=2.0,
#             value=1.1,
#             step=0.1,
#             label="Repetition penalty",
#         ),
#     ],
#     retry_btn="Retry",
#     undo_btn="Undo",
#     clear_btn="Clear",
#     submit_btn="Send",
#     title="Chat with Meta-Llama-3.1-8B-Instruct using llama.cpp", 
#     description=description,
#     chatbot=gr.Chatbot(
#         scale=1, 
#         likeable=False,
#         show_copy_button=True
#     )
# )

# if __name__ == "__main__":
#     demo.launch()



####03 3.1 8b

import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread

MODEL_LIST = ["meta-llama/Meta-Llama-3.1-8B-Instruct"]
HF_TOKEN = os.environ.get("HF_API_TOKEN",None)
print(HF_TOKEN,"######$$$$$$$$$$$$$$$")
MODEL = os.environ.get("MODEL_ID","meta-llama/Meta-Llama-3.1-8B-Instruct")

TITLE = "<h1><center>Meta-Llama3.1-8B</center></h1>"

PLACEHOLDER = """
<center>
<p>Hi! How can I help you today?</p>
</center>
"""


CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type= "nf4")

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config)

@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
    system_prompt: str,
    temperature: float = 0.8, 
    max_new_tokens: int = 1024, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = [
        {"role": "system", "content": system_prompt}
    ]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=input_ids, 
        max_new_tokens = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        top_k = top_k,
        temperature = temperature,
        repetition_penalty=penalty,
        eos_token_id=[128001,128008,128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

            
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(
                value="You are a helpful assistant",
                label="System Prompt",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()