Spaces:
Runtime error
Runtime error
Commit
·
1ff18ea
1
Parent(s):
a280a67
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""S22.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1pq0UO46D0emoqF8rPuD4cUznmYVSMESO
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 11 |
+
# %pip install lightning -q
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
torch.cuda.is_available()
|
| 17 |
+
|
| 18 |
+
import glob
|
| 19 |
+
import math
|
| 20 |
+
import sys
|
| 21 |
+
import time
|
| 22 |
+
from pathlib import Path
|
| 23 |
+
from typing import Optional, Tuple, Union
|
| 24 |
+
|
| 25 |
+
import lightning as L
|
| 26 |
+
from lightning.fabric.loggers import CSVLogger
|
| 27 |
+
from lightning.fabric.strategies import FSDPStrategy
|
| 28 |
+
|
| 29 |
+
from tsai_gpt.model import GPT, Block, Config
|
| 30 |
+
from tsai_gpt.packed_dataset import CombinedDataset, PackedDataset
|
| 31 |
+
from tsai_gpt.speed_monitor import SpeedMonitorBase, estimate_flops, measure_flops
|
| 32 |
+
from tsai_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor
|
| 33 |
+
from tsai_gpt.utils import chunked_cross_entropy, get_default_supported_precision, num_parameters, load_checkpoint
|
| 34 |
+
import os
|
| 35 |
+
import pickle
|
| 36 |
+
from contextlib import nullcontext
|
| 37 |
+
from torch.utils.data import DataLoader
|
| 38 |
+
import torch.nn.functional as F
|
| 39 |
+
from tsai_gpt.tokenizer import Tokenizer
|
| 40 |
+
import gradio as gr
|
| 41 |
+
|
| 42 |
+
model_name = "pythia-160m"
|
| 43 |
+
name = "redpajama"
|
| 44 |
+
out_dir = Path("out") / name
|
| 45 |
+
|
| 46 |
+
hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")}
|
| 47 |
+
logger = CSVLogger("out", name, flush_logs_every_n_steps=log_interval)
|
| 48 |
+
|
| 49 |
+
fabric = L.Fabric(devices=1, strategy='auto', precision=None, loggers=logger)
|
| 50 |
+
|
| 51 |
+
checkpoint_path = Path("out/redpajama/iter-023999-ckpt.pth")
|
| 52 |
+
config = Config.from_name(model_name)
|
| 53 |
+
model = GPT(config)
|
| 54 |
+
|
| 55 |
+
load_checkpoint(fabric, model, checkpoint_path)
|
| 56 |
+
|
| 57 |
+
#print(model.transformer.h[0].mlp.fc.weight)
|
| 58 |
+
|
| 59 |
+
def generate( model, config, idx, max_new_tokens, temperature=1.0, top_k=None):
|
| 60 |
+
"""
|
| 61 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
| 62 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
| 63 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
| 64 |
+
|
| 65 |
+
"""
|
| 66 |
+
idx = idx.unsqueeze(dim=0)
|
| 67 |
+
for _ in range(max_new_tokens):
|
| 68 |
+
|
| 69 |
+
# # if the sequence context is growing too long we must crop it at block_size
|
| 70 |
+
idx_cond = idx if idx.size(1) <= config.block_size else idx[ :,-config.block_size:]
|
| 71 |
+
# forward the model to get the logits for the index in the sequence
|
| 72 |
+
idx_cd = idx
|
| 73 |
+
logits = model(idx_cd)
|
| 74 |
+
# pluck the logits at the final step and scale by desired temperature
|
| 75 |
+
logits = logits[:, -1, :] / temperature
|
| 76 |
+
# optionally crop the logits to only the top k options
|
| 77 |
+
if top_k is not None:
|
| 78 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 79 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 80 |
+
# apply softmax to convert logits to (normalized) probabilities
|
| 81 |
+
probs = F.softmax(logits, dim=-1)
|
| 82 |
+
# sample from the distribution
|
| 83 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 84 |
+
# append sampled index to the running sequence and continue
|
| 85 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 86 |
+
|
| 87 |
+
return idx
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
checkpoint_dir = Path('./checkpoints/meta-llama/Llama-2-7b-chat-hf')
|
| 92 |
+
token = Tokenizer(checkpoint_dir = checkpoint_dir)
|
| 93 |
+
|
| 94 |
+
def tsaigpt(start:str , model= model, max_new_tokens = 300, num_samples =2, tokeniser= token):
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# -----------------------------------------------------------------------------
|
| 99 |
+
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
|
| 100 |
+
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
| 101 |
+
seed = 1337
|
| 102 |
+
device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
| 103 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
|
| 104 |
+
compile = False # use PyTorch 2.0 to compile the model to be faster
|
| 105 |
+
#exec(open('configurator.py').read()) # overrides from command line or config file
|
| 106 |
+
# -----------------------------------------------------------------------------
|
| 107 |
+
|
| 108 |
+
torch.manual_seed(seed)
|
| 109 |
+
torch.cuda.manual_seed(seed)
|
| 110 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
| 111 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
| 112 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
| 113 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 114 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 115 |
+
|
| 116 |
+
model.eval()
|
| 117 |
+
model.to(device)
|
| 118 |
+
if compile:
|
| 119 |
+
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
start_ids = tokeniser.encode(start).to(device)
|
| 124 |
+
#x = torch.tensor(start_ids, dtype=torch.long, device=device).clone().detach()
|
| 125 |
+
|
| 126 |
+
# run generation
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
with ctx:
|
| 129 |
+
|
| 130 |
+
y = generate(model =model, config =config , max_new_tokens = max_new_tokens, idx = start_ids ,temperature=1.0, top_k=None)
|
| 131 |
+
#print(decode(y[0].tolist()))
|
| 132 |
+
output = tokeniser.decode(y[0])
|
| 133 |
+
return output
|
| 134 |
+
|
| 135 |
+
INTERFACE = gr.Interface(fn=tsaigpt, inputs=[gr.Textbox(label= "Prompt", value= 'All that glisters is not gold.'),
|
| 136 |
+
gr.Slider(minimum = 300, maximum = 500, value= 300, label= "Maximum number of tokens to be generated")] ,
|
| 137 |
+
outputs=gr.Text(label= "Generated Text"), title="TSAI_GPT",
|
| 138 |
+
description="TSAIGPT is a transformer-based language model with only 0.16 billion parameters, trained on RedPajama 1T Sample.",
|
| 139 |
+
examples = [['We know what we are, but know not what we may be',300],
|
| 140 |
+
['Sweet are the uses of adversity which, like the toad, ugly and venomous, wears yet a precious jewel in his head',300],]
|
| 141 |
+
).launch(debug=True)
|