Spaces:
Runtime error
Runtime error
import ast | |
import io | |
from typing import Dict, List, Union | |
import argilla as rg | |
import gradio as gr | |
import pandas as pd | |
from datasets import Dataset | |
from distilabel.distiset import Distiset | |
from distilabel.steps.tasks.text_generation import TextGeneration | |
from gradio.oauth import OAuthToken | |
from huggingface_hub import upload_file | |
from huggingface_hub.hf_api import HfApi | |
from src.distilabel_dataset_generator.pipelines.embeddings import ( | |
get_embeddings, | |
get_sentence_embedding_dimensions, | |
) | |
from src.distilabel_dataset_generator.pipelines.sft import ( | |
DEFAULT_BATCH_SIZE, | |
DEFAULT_DATASET_DESCRIPTIONS, | |
DEFAULT_DATASETS, | |
DEFAULT_SYSTEM_PROMPTS, | |
PROMPT_CREATION_PROMPT, | |
generate_pipeline_code, | |
get_magpie_generator, | |
get_prompt_generator, | |
get_response_generator, | |
) | |
from src.distilabel_dataset_generator.utils import ( | |
get_argilla_client, | |
get_login_button, | |
get_org_dropdown, | |
swap_visibilty, | |
) | |
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]: | |
return ast.literal_eval( | |
messages.replace("'user'}", "'user'},") | |
.replace("'system'}", "'system'},") | |
.replace("'assistant'}", "'assistant'},") | |
) | |
def generate_system_prompt(dataset_description, progress=gr.Progress()): | |
progress(0.0, desc="Generating system prompt") | |
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS: | |
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description) | |
if index < len(DEFAULT_SYSTEM_PROMPTS): | |
return DEFAULT_SYSTEM_PROMPTS[index] | |
progress(0.3, desc="Initializing text generation") | |
generate_description: TextGeneration = get_prompt_generator() | |
progress(0.7, desc="Generating system prompt") | |
result = next( | |
generate_description.process( | |
[ | |
{ | |
"system_prompt": PROMPT_CREATION_PROMPT, | |
"instruction": dataset_description, | |
} | |
] | |
) | |
)[0]["generation"] | |
progress(1.0, desc="System prompt generated") | |
return result | |
def generate_sample_dataset(system_prompt, progress=gr.Progress()): | |
if system_prompt in DEFAULT_SYSTEM_PROMPTS: | |
index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt) | |
if index < len(DEFAULT_DATASETS): | |
return DEFAULT_DATASETS[index] | |
result = generate_dataset( | |
system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True | |
) | |
return result | |
def _check_push_to_hub(org_name, repo_name): | |
repo_id = ( | |
f"{org_name}/{repo_name}" | |
if repo_name is not None and org_name is not None | |
else None | |
) | |
if repo_id is not None: | |
if not all([repo_id, org_name, repo_name]): | |
raise gr.Error( | |
"Please provide a `repo_name` and `org_name` to push the dataset to." | |
) | |
return repo_id | |
def generate_dataset( | |
system_prompt: str, | |
num_turns: int = 1, | |
num_rows: int = 5, | |
is_sample: bool = False, | |
progress=gr.Progress(), | |
) -> pd.DataFrame: | |
progress(0.0, desc="(1/2) Generating instructions") | |
magpie_generator = get_magpie_generator( | |
num_turns, num_rows, system_prompt, is_sample | |
) | |
response_generator = get_response_generator(num_turns, system_prompt, is_sample) | |
total_steps: int = num_rows * 2 | |
batch_size = DEFAULT_BATCH_SIZE | |
# create instructions | |
n_processed = 0 | |
magpie_results = [] | |
while n_processed < num_rows: | |
progress( | |
0.5 * n_processed / num_rows, | |
total=total_steps, | |
desc="(1/2) Generating instructions", | |
) | |
remaining_rows = num_rows - n_processed | |
batch_size = min(batch_size, remaining_rows) | |
inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)] | |
batch = list(magpie_generator.process(inputs=inputs)) | |
magpie_results.extend(batch[0]) | |
n_processed += batch_size | |
progress(0.5, desc="(1/2) Generating instructions") | |
# generate responses | |
n_processed = 0 | |
response_results = [] | |
if num_turns == 1: | |
while n_processed < num_rows: | |
progress( | |
0.5 + 0.5 * n_processed / num_rows, | |
total=total_steps, | |
desc="(2/2) Generating responses", | |
) | |
batch = magpie_results[n_processed : n_processed + batch_size] | |
responses = list(response_generator.process(inputs=batch)) | |
response_results.extend(responses[0]) | |
n_processed += batch_size | |
for result in response_results: | |
result["prompt"] = result["instruction"] | |
result["completion"] = result["generation"] | |
result["system_prompt"] = system_prompt | |
else: | |
for result in magpie_results: | |
result["conversation"].insert( | |
0, {"role": "system", "content": system_prompt} | |
) | |
result["messages"] = result["conversation"] | |
while n_processed < num_rows: | |
progress( | |
0.5 + 0.5 * n_processed / num_rows, | |
total=total_steps, | |
desc="(2/2) Generating responses", | |
) | |
batch = magpie_results[n_processed : n_processed + batch_size] | |
responses = list(response_generator.process(inputs=batch)) | |
response_results.extend(responses[0]) | |
n_processed += batch_size | |
for result in response_results: | |
result["messages"].append( | |
{"role": "assistant", "content": result["generation"]} | |
) | |
progress( | |
1, | |
total=total_steps, | |
desc="(2/2) Generating responses", | |
) | |
# create distiset | |
distiset_results = [] | |
for result in response_results: | |
record = {} | |
for relevant_keys in [ | |
"messages", | |
"prompt", | |
"completion", | |
"model_name", | |
"system_prompt", | |
]: | |
if relevant_keys in result: | |
record[relevant_keys] = result[relevant_keys] | |
distiset_results.append(record) | |
distiset = Distiset( | |
{ | |
"default": Dataset.from_list(distiset_results), | |
} | |
) | |
# If not pushing to hub generate the dataset directly | |
distiset = distiset["default"] | |
if num_turns == 1: | |
outputs = distiset.to_pandas()[["system_prompt", "prompt", "completion"]] | |
else: | |
outputs = distiset.to_pandas()[["messages"]] | |
dataframe = pd.DataFrame(outputs) | |
progress(1.0, desc="Dataset generation completed") | |
return dataframe | |
def push_to_hub( | |
dataframe: pd.DataFrame, | |
private: bool = True, | |
org_name: str = None, | |
repo_name: str = None, | |
oauth_token: Union[OAuthToken, None] = None, | |
progress=gr.Progress(), | |
) -> pd.DataFrame: | |
original_dataframe = dataframe.copy(deep=True) | |
if "messages" in dataframe.columns: | |
dataframe["messages"] = dataframe["messages"].apply( | |
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x | |
) | |
progress(0.1, desc="Setting up dataset") | |
repo_id = _check_push_to_hub(org_name, repo_name) | |
distiset = Distiset( | |
{ | |
"default": Dataset.from_pandas(dataframe), | |
} | |
) | |
progress(0.2, desc="Pushing dataset to hub") | |
distiset.push_to_hub( | |
repo_id=repo_id, | |
private=private, | |
include_script=False, | |
token=oauth_token.token, | |
create_pr=False, | |
) | |
progress(1.0, desc="Dataset pushed to hub") | |
return original_dataframe | |
def push_to_argilla( | |
dataframe: pd.DataFrame, | |
dataset_name: str, | |
oauth_token: Union[OAuthToken, None] = None, | |
progress=gr.Progress(), | |
) -> pd.DataFrame: | |
original_dataframe = dataframe.copy(deep=True) | |
if "messages" in dataframe.columns: | |
dataframe["messages"] = dataframe["messages"].apply( | |
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x | |
) | |
try: | |
progress(0.1, desc="Setting up user and workspace") | |
client = get_argilla_client() | |
hf_user = HfApi().whoami(token=oauth_token.token)["name"] | |
# Create user if it doesn't exist | |
rg_user = client.users(username=hf_user) | |
if rg_user is None: | |
rg_user = client.users.add(rg.User(username=hf_user, role="admin")) | |
# Create workspace if it doesn't exist | |
workspace = client.workspaces(name=rg_user.username) | |
if workspace is None: | |
workspace = client.workspaces.add(rg.Workspace(name=rg_user.username)) | |
workspace.add_user(rg_user) | |
if "messages" in dataframe.columns: | |
settings = rg.Settings( | |
fields=[ | |
rg.ChatField( | |
name="messages", description="The messages in the conversation" | |
), | |
], | |
questions=[ | |
rg.RatingQuestion( | |
name="rating", | |
description="The rating of the conversation", | |
values=list(range(1, 6)), | |
), | |
], | |
metadata=[ | |
rg.IntegerMetadataProperty( | |
name="user_message_length", title="User Message Length" | |
), | |
rg.IntegerMetadataProperty( | |
name="assistant_message_length", | |
title="Assistant Message Length", | |
), | |
], | |
vectors=[ | |
rg.VectorField( | |
name="messages_embeddings", | |
dimensions=get_sentence_embedding_dimensions(), | |
) | |
], | |
guidelines="Please review the conversation and provide a score for the assistant's response.", | |
) | |
dataframe["user_message_length"] = dataframe["messages"].apply( | |
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"]) | |
) | |
dataframe["assistant_message_length"] = dataframe["messages"].apply( | |
lambda x: sum( | |
[len(y["content"]) for y in x if y["role"] == "assistant"] | |
) | |
) | |
dataframe["messages_embeddings"] = get_embeddings( | |
dataframe["messages"].apply( | |
lambda x: " ".join([y["content"] for y in x]) | |
) | |
) | |
else: | |
settings = rg.Settings( | |
fields=[ | |
rg.TextField( | |
name="system_prompt", | |
description="The system prompt used for the conversation", | |
required=False, | |
), | |
rg.TextField( | |
name="prompt", | |
description="The prompt used for the conversation", | |
), | |
rg.TextField( | |
name="completion", | |
description="The completion from the assistant", | |
), | |
], | |
questions=[ | |
rg.RatingQuestion( | |
name="rating", | |
description="The rating of the conversation", | |
values=list(range(1, 6)), | |
), | |
], | |
metadata=[ | |
rg.IntegerMetadataProperty( | |
name="prompt_length", title="Prompt Length" | |
), | |
rg.IntegerMetadataProperty( | |
name="completion_length", title="Completion Length" | |
), | |
], | |
vectors=[ | |
rg.VectorField( | |
name="prompt_embeddings", | |
dimensions=get_sentence_embedding_dimensions(), | |
) | |
], | |
guidelines="Please review the conversation and correct the prompt and completion where needed.", | |
) | |
dataframe["prompt_length"] = dataframe["prompt"].apply(len) | |
dataframe["completion_length"] = dataframe["completion"].apply(len) | |
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"]) | |
progress(0.5, desc="Creating dataset") | |
rg_dataset = client.datasets(name=dataset_name, workspace=rg_user.username) | |
if rg_dataset is None: | |
rg_dataset = rg.Dataset( | |
name=dataset_name, | |
workspace=rg_user.username, | |
settings=settings, | |
client=client, | |
) | |
rg_dataset = rg_dataset.create() | |
progress(0.7, desc="Pushing dataset to Argilla") | |
hf_dataset = Dataset.from_pandas(dataframe) | |
rg_dataset.records.log(records=hf_dataset) | |
progress(1.0, desc="Dataset pushed to Argilla") | |
except Exception as e: | |
raise gr.Error(f"Error pushing dataset to Argilla: {e}") | |
return original_dataframe | |
def validate_argilla_dataset_name( | |
dataset_name: str, | |
final_dataset: pd.DataFrame, | |
oauth_token: Union[OAuthToken, None] = None, | |
progress=gr.Progress(), | |
) -> str: | |
progress(0, desc="Validating dataset configuration") | |
hf_user = HfApi().whoami(token=oauth_token.token)["name"] | |
client = get_argilla_client() | |
if dataset_name is None or dataset_name == "": | |
raise gr.Error("Dataset name is required") | |
dataset = client.datasets(name=dataset_name, workspace=hf_user) | |
if dataset: | |
raise gr.Error(f"Dataset {dataset_name} already exists") | |
return final_dataset | |
def upload_pipeline_code( | |
pipeline_code, | |
org_name, | |
repo_name, | |
oauth_token: Union[OAuthToken, None] = None, | |
progress=gr.Progress(), | |
): | |
repo_id = _check_push_to_hub(org_name, repo_name) | |
progress(0.1, desc="Uploading pipeline code") | |
with io.BytesIO(pipeline_code.encode("utf-8")) as f: | |
upload_file( | |
path_or_fileobj=f, | |
path_in_repo="pipeline.py", | |
repo_id=repo_id, | |
repo_type="dataset", | |
token=oauth_token.token, | |
commit_message="Include pipeline script", | |
create_pr=False, | |
) | |
progress(1.0, desc="Pipeline code uploaded") | |
css = """ | |
.main_ui_logged_out{opacity: 0.3; pointer-events: none} | |
""" | |
with gr.Blocks( | |
title="๐งฌ Synthetic Data Generator", | |
head="๐งฌ Synthetic Data Generator", | |
css=css, | |
) as app: | |
with gr.Row(): | |
gr.Markdown( | |
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation." | |
) | |
with gr.Row(): | |
gr.Column() | |
get_login_button() | |
gr.Column() | |
gr.Markdown("## Iterate on a sample dataset") | |
with gr.Column() as main_ui: | |
dataset_description = gr.TextArea( | |
label="Give a precise description of the assistant or tool. Don't describe the dataset", | |
value=DEFAULT_DATASET_DESCRIPTIONS[0], | |
lines=2, | |
) | |
examples = gr.Examples( | |
elem_id="system_prompt_examples", | |
examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS], | |
inputs=[dataset_description], | |
) | |
with gr.Row(): | |
gr.Column(scale=1) | |
btn_generate_system_prompt = gr.Button( | |
value="Generate system prompt and sample dataset" | |
) | |
gr.Column(scale=1) | |
system_prompt = gr.TextArea( | |
label="System prompt for dataset generation. You can tune it and regenerate the sample", | |
value=DEFAULT_SYSTEM_PROMPTS[0], | |
lines=5, | |
) | |
with gr.Row(): | |
sample_dataset = gr.Dataframe( | |
value=DEFAULT_DATASETS[0], | |
label="Sample dataset. Prompts and completions truncated to 256 tokens.", | |
interactive=False, | |
wrap=True, | |
) | |
with gr.Row(): | |
gr.Column(scale=1) | |
btn_generate_sample_dataset = gr.Button( | |
value="Generate sample dataset", | |
) | |
gr.Column(scale=1) | |
result = btn_generate_system_prompt.click( | |
fn=generate_system_prompt, | |
inputs=[dataset_description], | |
outputs=[system_prompt], | |
show_progress=True, | |
).then( | |
fn=generate_sample_dataset, | |
inputs=[system_prompt], | |
outputs=[sample_dataset], | |
show_progress=True, | |
) | |
btn_generate_sample_dataset.click( | |
fn=generate_sample_dataset, | |
inputs=[system_prompt], | |
outputs=[sample_dataset], | |
show_progress=True, | |
) | |
# Add a header for the full dataset generation section | |
gr.Markdown("## Generate full dataset") | |
gr.Markdown( | |
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub." | |
) | |
with gr.Column() as push_to_hub_ui: | |
with gr.Row(variant="panel"): | |
num_turns = gr.Number( | |
value=1, | |
label="Number of turns in the conversation", | |
minimum=1, | |
maximum=4, | |
step=1, | |
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).", | |
) | |
num_rows = gr.Number( | |
value=10, | |
label="Number of rows in the dataset", | |
minimum=1, | |
maximum=500, | |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.", | |
) | |
with gr.Tab(label="Argilla"): | |
if get_argilla_client(): | |
with gr.Row(variant="panel"): | |
dataset_name = gr.Textbox( | |
label="Dataset name", | |
placeholder="dataset_name", | |
value="my-distiset", | |
) | |
with gr.Row(variant="panel"): | |
btn_generate_full_dataset_copy = gr.Button( | |
value="Generate", variant="primary", scale=2 | |
) | |
btn_generate_and_push_to_argilla = gr.Button( | |
value="Generate and Push to Argilla", | |
variant="primary", | |
scale=2, | |
) | |
btn_push_to_argilla = gr.Button( | |
value="Push to Argilla", variant="primary", scale=2 | |
) | |
else: | |
gr.Markdown( | |
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla." | |
) | |
with gr.Tab("Hugging Face Hub"): | |
with gr.Row(variant="panel"): | |
org_name = get_org_dropdown() | |
repo_name = gr.Textbox( | |
label="Repo name", | |
placeholder="dataset_name", | |
value="my-distiset", | |
) | |
private = gr.Checkbox( | |
label="Private dataset", | |
value=True, | |
interactive=True, | |
scale=0.5, | |
) | |
with gr.Row(variant="panel"): | |
btn_generate_full_dataset = gr.Button( | |
value="Generate", variant="primary", scale=2 | |
) | |
btn_generate_and_push_to_hub = gr.Button( | |
value="Generate and Push to Hub", variant="primary", scale=2 | |
) | |
btn_push_to_hub = gr.Button( | |
value="Push to Hub", variant="primary", scale=2 | |
) | |
with gr.Row(): | |
final_dataset = gr.Dataframe( | |
value=DEFAULT_DATASETS[0], | |
label="Generated dataset", | |
interactive=False, | |
wrap=True, | |
) | |
with gr.Row(): | |
success_message = gr.Markdown(visible=False) | |
def show_success_message_argilla(): | |
client = get_argilla_client() | |
argilla_api_url = client.api_url | |
return gr.Markdown( | |
value=f""" | |
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;"> | |
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3> | |
<p style="margin-top: 0.5em;"> | |
Your dataset is now available at: | |
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;"> | |
{argilla_api_url} | |
</a> | |
<br>Unfamiliar with Argilla? Here are some docs to help you get started: | |
<br>โข <a href="https://docs.argilla.io/latest/getting_started/quickstart/#sign-in-into-the-argilla-ui" target="_blank">Login with OAuth</a> | |
<br>โข <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">Curate your data</a> | |
<br>โข <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">Export your data</a> | |
</p> | |
</div> | |
""", | |
visible=True, | |
) | |
def show_success_message_hub(org_name, repo_name): | |
return gr.Markdown( | |
value=f""" | |
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;"> | |
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3> | |
<p style="margin-top: 0.5em;"> | |
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain or other frameworks. | |
Your dataset is now available at: | |
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;"> | |
https://huggingface.co/datasets/{org_name}/{repo_name} | |
</a> | |
</p> | |
</div> | |
""", | |
visible=True, | |
) | |
def hide_success_message(): | |
return gr.Markdown(visible=False) | |
gr.Markdown("## Or run this pipeline locally with distilabel") | |
gr.Markdown( | |
"You can run this pipeline locally with distilabel. For more information, please refer to the [distilabel documentation](https://distilabel.argilla.io/) or go to the FAQ tab at the top of the page for more information." | |
) | |
with gr.Accordion( | |
"Run this pipeline using distilabel", | |
open=False, | |
): | |
pipeline_code = gr.Code( | |
value=generate_pipeline_code( | |
system_prompt.value, num_turns.value, num_rows.value | |
), | |
language="python", | |
label="Distilabel Pipeline Code", | |
) | |
sample_dataset.change( | |
fn=lambda x: x, | |
inputs=[sample_dataset], | |
outputs=[final_dataset], | |
) | |
gr.on( | |
triggers=[ | |
btn_generate_full_dataset.click, | |
btn_generate_full_dataset_copy.click, | |
], | |
fn=hide_success_message, | |
outputs=[success_message], | |
).then( | |
fn=generate_dataset, | |
inputs=[system_prompt, num_turns, num_rows], | |
outputs=[final_dataset], | |
show_progress=True, | |
) | |
btn_generate_and_push_to_argilla.click( | |
fn=validate_argilla_dataset_name, | |
inputs=[dataset_name, final_dataset], | |
outputs=[final_dataset], | |
show_progress=True, | |
).success( | |
fn=hide_success_message, | |
outputs=[success_message], | |
).success( | |
fn=generate_dataset, | |
inputs=[system_prompt, num_turns, num_rows], | |
outputs=[final_dataset], | |
show_progress=True, | |
).success( | |
fn=push_to_argilla, | |
inputs=[final_dataset, dataset_name], | |
outputs=[final_dataset], | |
show_progress=True, | |
).success( | |
fn=show_success_message_argilla, | |
inputs=[], | |
outputs=[success_message], | |
) | |
btn_generate_and_push_to_hub.click( | |
fn=hide_success_message, | |
outputs=[success_message], | |
).then( | |
fn=generate_dataset, | |
inputs=[system_prompt, num_turns, num_rows], | |
outputs=[final_dataset], | |
show_progress=True, | |
).then( | |
fn=push_to_hub, | |
inputs=[final_dataset, private, org_name, repo_name], | |
outputs=[final_dataset], | |
show_progress=True, | |
).then( | |
fn=upload_pipeline_code, | |
inputs=[pipeline_code, org_name, repo_name], | |
outputs=[], | |
show_progress=True, | |
).success( | |
fn=show_success_message_hub, | |
inputs=[org_name, repo_name], | |
outputs=[success_message], | |
) | |
btn_push_to_hub.click( | |
fn=hide_success_message, | |
outputs=[success_message], | |
).then( | |
fn=push_to_hub, | |
inputs=[final_dataset, private, org_name, repo_name], | |
outputs=[final_dataset], | |
show_progress=True, | |
).then( | |
fn=upload_pipeline_code, | |
inputs=[pipeline_code, org_name, repo_name], | |
outputs=[], | |
show_progress=True, | |
).success( | |
fn=show_success_message_hub, | |
inputs=[org_name, repo_name], | |
outputs=[success_message], | |
) | |
btn_push_to_argilla.click( | |
fn=hide_success_message, | |
outputs=[success_message], | |
).success( | |
fn=validate_argilla_dataset_name, | |
inputs=[dataset_name, final_dataset], | |
outputs=[final_dataset], | |
show_progress=True, | |
).success( | |
fn=push_to_argilla, | |
inputs=[final_dataset, dataset_name], | |
outputs=[final_dataset], | |
show_progress=True, | |
).success( | |
fn=show_success_message_argilla, | |
inputs=[], | |
outputs=[success_message], | |
) | |
system_prompt.change( | |
fn=generate_pipeline_code, | |
inputs=[system_prompt, num_turns, num_rows], | |
outputs=[pipeline_code], | |
) | |
num_turns.change( | |
fn=generate_pipeline_code, | |
inputs=[system_prompt, num_turns, num_rows], | |
outputs=[pipeline_code], | |
) | |
num_rows.change( | |
fn=generate_pipeline_code, | |
inputs=[system_prompt, num_turns, num_rows], | |
outputs=[pipeline_code], | |
) | |
app.load(get_org_dropdown, outputs=[org_name]) | |
app.load(fn=swap_visibilty, outputs=main_ui) | |