Spaces:
Runtime error
Runtime error
File size: 5,793 Bytes
3c2fc33 f230d42 3c2fc33 f230d42 3c2fc33 099e99c 3c2fc33 099e99c 3c2fc33 f230d42 3c2fc33 099e99c 3c2fc33 fb096d2 3c2fc33 5c6644f 86f370f 9029def 86f370f 962b6f3 86f370f 714b133 86f370f 5c6644f 3c2fc33 86f370f 9029def 86f370f 962b6f3 86f370f 714b133 86f370f 3c2fc33 2995161 3c2fc33 099e99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import io
import uuid
from typing import Union
import argilla as rg
import gradio as gr
from gradio import OAuthToken
from huggingface_hub import HfApi, upload_file
from synthetic_dataset_generator.utils import get_argilla_client
def validate_argilla_user_workspace_dataset(
dataset_name: str,
add_to_existing_dataset: bool = True,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
) -> str:
progress(0, desc="Validating dataset configuration")
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
client = get_argilla_client()
if dataset_name is None or dataset_name == "":
raise gr.Error("Dataset name is required")
# Create user if it doesn't exist
rg_user = client.users(username=hf_user)
if rg_user is None:
rg_user = client.users.add(
rg.User(username=hf_user, role="admin", password=str(uuid.uuid4()))
)
# Create workspace if it doesn't exist
workspace = client.workspaces(name=hf_user)
if workspace is None:
workspace = client.workspaces.add(rg.Workspace(name=hf_user))
workspace.add_user(hf_user)
# Check if dataset exists
dataset = client.datasets(name=dataset_name, workspace=hf_user)
if dataset and not add_to_existing_dataset:
raise gr.Error(f"Dataset {dataset_name} already exists")
return ""
def push_pipeline_code_to_hub(
pipeline_code: str,
org_name: str,
repo_name: str,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
):
repo_id: str | None = validate_push_to_hub(org_name, repo_name)
progress(0.1, desc="Uploading pipeline code")
with io.BytesIO(pipeline_code.encode("utf-8")) as f:
upload_file(
path_or_fileobj=f,
path_in_repo="pipeline.py",
repo_id=repo_id,
repo_type="dataset",
token=oauth_token.token,
commit_message="Include pipeline script",
create_pr=False,
)
progress(1.0, desc="Pipeline code uploaded")
def validate_push_to_hub(org_name, repo_name):
repo_id = (
f"{org_name}/{repo_name}"
if repo_name is not None and org_name is not None
else None
)
if repo_id is not None:
if not all([repo_id, org_name, repo_name]):
raise gr.Error(
"Please provide a `repo_name` and `org_name` to push the dataset to."
)
return repo_id
def show_success_message(org_name, repo_name) -> gr.Markdown:
client = get_argilla_client()
if client is None:
return gr.Markdown(
value="""
<div style="padding: 1em; background-color: var(--block-background-fill); border-color: var(--border-color-primary); border-width: 1px; border-radius: 5px;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
The generated dataset is <a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank">available in the Hub</a>. It is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
</p>
<p style="margin-top: 1em; color: var(--block-title-text-color)">
By configuring an `ARGILLA_API_URL` and `ARGILLA_API_KEY` you can curate the dataset in Argilla.
Unfamiliar with Argilla? Here are some docs to help you get started:
<br>โข <a href="https://docs.argilla.io/latest/getting_started/quickstart/" target="_blank">How to get started with Argilla</a>
<br>โข <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
<br>โข <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
</p>
</div>
""",
visible=True,
)
argilla_api_url = client.api_url
return gr.Markdown(
value=f"""
<div style="padding: 1em; background-color: var(--block-background-fill); border-color: var(--border-color-primary); border-width: 1px; border-radius: 5px;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
The generated dataset is <a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank">available in the Hub</a>. It is in the right format for fine-tuning with TRL, AutoTrain, or other frameworks.
<div style="display: flex; gap: 10px;">
<a href="{argilla_api_url}" target="_blank" class="lg primary svelte-cmf5ev" style="color: white !important; margin-top: 0.5em; text-decoration: none;">
Open in Argilla
</a>
</div>
</p>
<p style="margin-top: 1em; color: var(--block-title-text-color)">
Unfamiliar with Argilla? Here are some docs to help you get started:
<br>โข <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
<br>โข <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
</p>
</div>
""",
visible=True,
)
def hide_success_message() -> gr.Markdown:
return gr.Markdown(value="")
|