|
import os |
|
|
|
|
|
import spaces |
|
import gc |
|
from functools import partial |
|
import gradio as gr |
|
import torch |
|
from speechbrain.inference.interfaces import Pretrained, foreign_class |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
import librosa |
|
import whisper_timestamped as whisper |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor |
|
from speechbrain.inference.VAD import VAD |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
vad_model = VAD.from_hparams( |
|
source="speechbrain/vad-crdnn-libriparty", |
|
savedir="vad_model", |
|
) |
|
|
|
|
|
def clean_up_memory(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@spaces.GPU(duration=15) |
|
def recap_sentence(string): |
|
|
|
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device) |
|
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0) |
|
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True) |
|
return recap_result |
|
|
|
|
|
@spaces.GPU(duration=30) |
|
def return_prediction_w2v2_mic(mic=None, vad_model=vad_model, device=device): |
|
if mic is not None: |
|
download_path = mic.split(".")[0] + ".txt" |
|
w2v2_result = w2v2_classifier.classify_file_w2v2(mic, vad_model, device) |
|
else: |
|
recap_result = "" |
|
w2v2_result = "" |
|
download_path = "empty.txt" |
|
with open(download_path, "w") as f: |
|
f.write(recap_result) |
|
yield recap_result, download_path |
|
|
|
recap_result = "" |
|
prev_segment = "" |
|
prev_segment_len = 0 |
|
|
|
for k, segment in enumerate(w2v2_result): |
|
if prev_segment == "": |
|
recap_segment = recap_sentence(segment) |
|
else: |
|
prev_segment_len = len(prev_segment.split()) |
|
recap_segment = recap_sentence(prev_segment + " " + segment) |
|
|
|
recap_segment = recap_segment.split() |
|
recap_segment = recap_segment[prev_segment_len:] |
|
recap_segment = " ".join(recap_segment) |
|
prev_segment = segment[0] |
|
recap_result += recap_segment + " " |
|
|
|
|
|
for i, letter in enumerate(recap_result): |
|
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): |
|
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] |
|
|
|
clean_up_memory() |
|
|
|
with open(download_path, "w") as f: |
|
f.write(recap_result) |
|
|
|
yield recap_result, download_path |
|
|
|
|
|
@spaces.GPU(duration=30) |
|
def return_prediction_w2v2_file(file=None, vad_model=vad_model, device=device): |
|
if file is not None: |
|
download_path = file.split(".")[0] + ".txt" |
|
w2v2_result = w2v2_classifier.classify_file_w2v2(file, vad_model, device) |
|
else: |
|
recap_result = "" |
|
w2v2_result = "" |
|
download_path = "empty.txt" |
|
with open(download_path, "w") as f: |
|
f.write(recap_result) |
|
yield recap_result, download_path |
|
|
|
recap_result = "" |
|
prev_segment = "" |
|
prev_segment_len = 0 |
|
|
|
for k, segment in enumerate(w2v2_result): |
|
if prev_segment == "": |
|
recap_segment= recap_sentence(segment) |
|
else: |
|
prev_segment_len = len(prev_segment.split()) |
|
recap_segment = recap_sentence(prev_segment + " " + segment) |
|
|
|
recap_segment = recap_segment.split() |
|
recap_segment = recap_segment[prev_segment_len:] |
|
recap_segment = " ".join(recap_segment) |
|
prev_segment = segment[0] |
|
recap_result += recap_segment + " " |
|
|
|
|
|
for i, letter in enumerate(recap_result): |
|
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): |
|
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] |
|
|
|
clean_up_memory() |
|
|
|
with open(download_path, "w") as f: |
|
f.write(recap_result) |
|
|
|
yield recap_result, download_path |
|
|
|
|
|
|
|
return_prediction_w2v2_mic_with_device = partial(return_prediction_w2v2_mic, vad_model=vad_model, device=device) |
|
return_prediction_w2v2_file_with_device = partial(return_prediction_w2v2_file, vad_model=vad_model, device=device) |
|
|
|
|
|
|
|
w2v2_classifier = foreign_class(source="Macedonian-ASR/buki-wav2vec2-2.0", pymodule_file="custom_interface_app.py", classname="ASR") |
|
w2v2_classifier = w2v2_classifier.to(device) |
|
w2v2_classifier.eval() |
|
|
|
|
|
|
|
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian" |
|
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name) |
|
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16) |
|
recap_model.to(device) |
|
recap_model.eval() |
|
|
|
|
|
mic_transcribe_wav2vec2 = gr.Interface( |
|
fn=return_prediction_w2v2_mic_with_device, |
|
inputs=gr.Audio(sources="microphone", type="filepath"), |
|
outputs=[gr.Textbox(label="Транскрипција"), gr.File(label="Зачувај го транскриптот", file_count="single")], |
|
allow_flagging="never", |
|
live=True |
|
) |
|
|
|
file_transcribe_wav2vec2 = gr.Interface( |
|
fn=return_prediction_w2v2_file_with_device, |
|
inputs=gr.Audio(sources="upload", type="filepath"), |
|
outputs=[gr.Textbox(label="Транскрипција"), gr.File(label="Зачувај го транскриптот", file_count="single")], |
|
allow_flagging="never", |
|
live=True |
|
) |
|
|
|
|
|
project_description_header = ''' |
|
<div class="header"> |
|
<img src="https://i.ibb.co/hYhkkhg/Buki-logo-1.jpg" |
|
alt="Bookie logo" |
|
style="float: right; width: 150px; height: 150px; margin-left: 10px;" /> |
|
|
|
<img src="https://i.ibb.co/GQBP350h/qr-buki-wav2vec2.png" |
|
alt="Bookie QR" |
|
style="float: right; width: 150px; height: 150px; margin-left: 10px;" /> |
|
|
|
<h2>Автори:</h2> |
|
<ol> |
|
<li>Дејан Порјазовски</li> |
|
<li>Илина Јакимовска</li> |
|
<li>Ордан Чукалиев</li> |
|
<li>Никола Стиков</li> |
|
|
|
<h4>Оваа колаборација е дел од активностите на Фондација <a href="https://qantarot.substack.com/about"><strong>КАНТАРОТ</strong></a> и <strong>Центарот за напредни интердисциплинарни истражувања (<a href="https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis">ЦеНИИс</a>)</strong> при УКИМ.</h4> |
|
</div> |
|
''' |
|
|
|
project_description_footer = ''' |
|
<div class="footer"> |
|
<h2>Во тренирањето на овој модел се употребени податоци од:</h2> |
|
<ol> |
|
<li>Дигитален архив за етнолошки и антрополошки ресурси (<a href="https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a">ДАЕАР</a>) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.</li> |
|
<li>Аудио верзија на меѓународното списание <a href="https://etno.pmf.ukim.mk/index.php/eaz/issue/archive">„ЕтноАнтропоЗум"</a> на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.</li> |
|
<li>Аудио подкастот <a href="https://obicniluge.mk/episodes/">„Обични луѓе"</a> на Илина Јакимовска</li> |
|
<li>Научните видеа од серијалот <a href="http://naukazadeca.mk">„Наука за деца"</a>, фондација <a href="https://qantarot.substack.com/">КАНТАРОТ</a></li> |
|
<li>Македонска верзија на <a href="https://commonvoice.mozilla.org/en/datasets">Mozilla Common Voice</a> (верзија 19.0)</li> |
|
<li>Наставничката Валентина Степановска-Андонова од училиштето Даме Груев во Битола и нејзините ученици Ана Ванчевска, Драган Трајковски и Леона Аземовска.</li> |
|
<li>Учениците од Меѓународното училиште НОВА</li> |
|
<li>Радиолозите од болницата 8 Септември, предводени од Димитар Вељановски</li> |
|
<li>Дамјан Божиноски</li> |
|
<li>Иван Митревски</li> |
|
<li>Илија Глигоров</li> |
|
<li><a href="https://mirovnaakcija.org">Мировна Акција</a></li> |
|
<li><a href="https://sdk.mk/index.php/category/sakam_da_kazam/">Сакам да кажам</a></li> |
|
<li><a href="https://vidivaka.mk">Види Вака</a></li> |
|
<li><a href="https://www.tiktakaudio.com">ТикТак аудио</a></li> |
|
</ol> |
|
</div> |
|
''' |
|
|
|
css = """ |
|
.gradio-container { |
|
background-color: #f3f3f3 !important; |
|
display: flex; |
|
flex-direction: column; |
|
} |
|
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a, .custom-markdown strong { |
|
font-size: 15px !important; |
|
font-family: Arial, sans-serif !important; |
|
color: black !important; /* Ensure text is black */ |
|
} |
|
button { |
|
color: orange !important; |
|
} |
|
.header { |
|
order: 1; |
|
margin-bottom: 20px; |
|
} |
|
.main-content { |
|
order: 2; |
|
} |
|
.footer { |
|
order: 3; |
|
margin-top: 20px; |
|
} |
|
.footer h2, .footer li, strong { |
|
color: black !important; /* Ensure footer text is also black */ |
|
} |
|
|
|
.header h2, .header h4, .header li, strong { |
|
color: black !important; /* Ensure footer text is also black */ |
|
} |
|
""" |
|
|
|
|
|
transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120)) |
|
|
|
with transcriber_app: |
|
state = gr.State() |
|
|
|
gr.HTML(project_description_header) |
|
|
|
gr.TabbedInterface( |
|
[mic_transcribe_wav2vec2, file_transcribe_wav2vec2], |
|
["Буки-w2v2 транскрипција од микрофон", "Буки-w2v2 транскрипција од фајл"], |
|
) |
|
|
|
gr.HTML(project_description_footer) |
|
|
|
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED")) |
|
|
|
transcriber_app.unload(return_prediction_w2v2_mic_with_device) |
|
transcriber_app.unload(return_prediction_w2v2_file_with_device) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
transcriber_app.queue() |
|
transcriber_app.launch() |