Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,32 @@ from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
|
3 |
|
4 |
# Define model and tokenizer
|
5 |
model_name = 'gpt2-large'
|
|
|
6 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
|
|
8 |
|
9 |
def generate_blogpost(topic):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Streamlit app
|
17 |
st.title('Blog Post Generator')
|
18 |
topic = st.text_input('Enter a topic:')
|
|
|
19 |
if topic:
|
|
|
20 |
blogpost = generate_blogpost(topic)
|
21 |
st.write(blogpost)
|
|
|
3 |
|
4 |
# Define model and tokenizer
|
5 |
model_name = 'gpt2-large'
|
6 |
+
st.write("Loading model and tokenizer...")
|
7 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
8 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
9 |
+
st.write("Model and tokenizer loaded.")
|
10 |
|
11 |
def generate_blogpost(topic):
|
12 |
+
try:
|
13 |
+
inputs = tokenizer.encode(topic, return_tensors='pt')
|
14 |
+
attention_mask = tokenizer.encode_plus(topic, return_tensors='pt')['attention_mask']
|
15 |
+
outputs = model.generate(
|
16 |
+
inputs,
|
17 |
+
attention_mask=attention_mask,
|
18 |
+
max_length=500,
|
19 |
+
num_return_sequences=1,
|
20 |
+
pad_token_id=tokenizer.eos_token_id
|
21 |
+
)
|
22 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
return text
|
24 |
+
except Exception as e:
|
25 |
+
return f"Error: {e}"
|
26 |
|
27 |
# Streamlit app
|
28 |
st.title('Blog Post Generator')
|
29 |
topic = st.text_input('Enter a topic:')
|
30 |
+
|
31 |
if topic:
|
32 |
+
st.write("Generating blog post...")
|
33 |
blogpost = generate_blogpost(topic)
|
34 |
st.write(blogpost)
|